Raiedhah Alsaiari Raiedhah Alsaiari, Moustafa A Rizk Moustafa A Rizk, Esraa Musa Esraa Musa, Huda Alqahtani Huda Alqahtani, Fatima Alqadri Fatima Alqadri, Mervat Mohamed Mervat Mohamed, Mabkhoot Alsaiari Mabkhoot Alsaiari, Ali Alkorbi Ali Alkorbi, Iman Shedaiwa Iman Shedaiwa, Faeza Alkorbi Faeza Alkorbi
{"title":"Supported Ruthenium Catalysts for Oxidation of Benzyl Alcohol under Solvent Free Conditions","authors":"Raiedhah Alsaiari Raiedhah Alsaiari, Moustafa A Rizk Moustafa A Rizk, Esraa Musa Esraa Musa, Huda Alqahtani Huda Alqahtani, Fatima Alqadri Fatima Alqadri, Mervat Mohamed Mervat Mohamed, Mabkhoot Alsaiari Mabkhoot Alsaiari, Ali Alkorbi Ali Alkorbi, Iman Shedaiwa Iman Shedaiwa, Faeza Alkorbi Faeza Alkorbi","doi":"10.52568/001069/jcsp/44.04.2022","DOIUrl":null,"url":null,"abstract":"The investigation comprised an evaluation of the use of the catalyst, 1%Ru/TiO2, to oxidize Phenylmethanol into benzenecarbaldehyde. nitrogen adsorption isotherms and transmittance electron microscope (TEM) were deployed to delineate the properties of the supported catalysts. The findings indicated a superior catalytic performance from 1%Ru/TiO2 prepared using sol-immobilization method. No reaction was taken place with blank reaction or with undoped support. This was deemed to be a consequence of the dispersion and loading of Ru on the TiO2.The reaction conditions, i.e., temperature, reaction time, nature of catalyst and activating quantity, were optimized to achieve superior reaction parameters. This process gave rise to a benzyl alcohol transformation rate of up to 10%; and selectivity of benzaldehyde was 98%.","PeriodicalId":17253,"journal":{"name":"Journal of the chemical society of pakistan","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the chemical society of pakistan","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.52568/001069/jcsp/44.04.2022","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
The investigation comprised an evaluation of the use of the catalyst, 1%Ru/TiO2, to oxidize Phenylmethanol into benzenecarbaldehyde. nitrogen adsorption isotherms and transmittance electron microscope (TEM) were deployed to delineate the properties of the supported catalysts. The findings indicated a superior catalytic performance from 1%Ru/TiO2 prepared using sol-immobilization method. No reaction was taken place with blank reaction or with undoped support. This was deemed to be a consequence of the dispersion and loading of Ru on the TiO2.The reaction conditions, i.e., temperature, reaction time, nature of catalyst and activating quantity, were optimized to achieve superior reaction parameters. This process gave rise to a benzyl alcohol transformation rate of up to 10%; and selectivity of benzaldehyde was 98%.
期刊介绍:
This journal covers different research areas in the field of Chemistry. These include; Analytical Chemistry, Applied Chemistry, Biochemistry, Environmental Chemistry, Industrial Chemistry, Inorganic Chemistry, Organic Chemistry and Physical Chemistry. The journal publishes full length articles and Reviews from researchers in academia in addition to featuring comments. Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry.