Electrochemical and Computational Study of Copper Histidine Complex via Cyclic Voltammetry

IF 0.6 4区 化学 Q4 CHEMISTRY, MULTIDISCIPLINARY Journal of the chemical society of pakistan Pub Date : 2022-01-01 DOI:10.52568/001077/jcsp/44.04.2022
Atya Hassan Atya Hassan, Sana Gul Sana Gul, Taswar Ali Chandio and Muhammad Ali Minhas Taswar Ali Chandio and Muhammad Ali Minhas
{"title":"Electrochemical and Computational Study of Copper Histidine Complex via Cyclic Voltammetry","authors":"Atya Hassan Atya Hassan, Sana Gul Sana Gul, Taswar Ali Chandio and Muhammad Ali Minhas Taswar Ali Chandio and Muhammad Ali Minhas","doi":"10.52568/001077/jcsp/44.04.2022","DOIUrl":null,"url":null,"abstract":"L-Histidine regulates body function and involve in the synthesis of hemoglobin, repairing of tissues and strengthens of immune system. In this study, Cyclic Voltammetry (CV) is used with 0.1 M Potassium Chloride as a supporting electrolyte to determine the accurate metal ligand ratio between Cu+2 and L-Histidine. In CV potential window is set between +0.6 to -0.4V to record theVoltammogram. Voltammograms were recorded by varying scan rate from 50mV/s to 300mV/s. Cyclic Voltammetry is used to analyzed the interfacial performance of the complex and repeated CyclicVoltammograms (07 cycles) were recorded at Glassy Carbon Electrode (GCE), that shows no change in peak current intensity of both anodic and cathodic peak. Further, neither pre nor any post peak was observed. These interpretation express that reactant and product are not involve in the adsorption-desorption process at the surface of Glassy Carbon Electrode (GCE). These remarks suggest that it is diffusion controlled process in the above mentioned system. The interaction of Cu+2 and L-Histidine were not reported before through Cyclic Voltammetry. Furthermore, in this study structure of Cu+2 vs. L-Histidine complex is investigated from a theoretical perspective. Optimization of Cu+2 vs. L-Histidine complex was carried out by DFT method and result verifies that stable structure of Cu+2 vs. L-Histidine complex exist as square planar structure in 1:2 ratio respectively. The computed structure has correlation with experimental results and Voltammogram of 1:2 ratio complex of Cu+2 vs. L-Histidine suggested that it exist in Square planar geometry.","PeriodicalId":17253,"journal":{"name":"Journal of the chemical society of pakistan","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the chemical society of pakistan","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.52568/001077/jcsp/44.04.2022","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

L-Histidine regulates body function and involve in the synthesis of hemoglobin, repairing of tissues and strengthens of immune system. In this study, Cyclic Voltammetry (CV) is used with 0.1 M Potassium Chloride as a supporting electrolyte to determine the accurate metal ligand ratio between Cu+2 and L-Histidine. In CV potential window is set between +0.6 to -0.4V to record theVoltammogram. Voltammograms were recorded by varying scan rate from 50mV/s to 300mV/s. Cyclic Voltammetry is used to analyzed the interfacial performance of the complex and repeated CyclicVoltammograms (07 cycles) were recorded at Glassy Carbon Electrode (GCE), that shows no change in peak current intensity of both anodic and cathodic peak. Further, neither pre nor any post peak was observed. These interpretation express that reactant and product are not involve in the adsorption-desorption process at the surface of Glassy Carbon Electrode (GCE). These remarks suggest that it is diffusion controlled process in the above mentioned system. The interaction of Cu+2 and L-Histidine were not reported before through Cyclic Voltammetry. Furthermore, in this study structure of Cu+2 vs. L-Histidine complex is investigated from a theoretical perspective. Optimization of Cu+2 vs. L-Histidine complex was carried out by DFT method and result verifies that stable structure of Cu+2 vs. L-Histidine complex exist as square planar structure in 1:2 ratio respectively. The computed structure has correlation with experimental results and Voltammogram of 1:2 ratio complex of Cu+2 vs. L-Histidine suggested that it exist in Square planar geometry.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
循环伏安法研究组氨酸铜络合物的电化学及计算
l -组氨酸调节机体功能,参与血红蛋白的合成、组织的修复和免疫系统的增强。本研究采用循环伏安法(CV),以0.1 M氯化钾作为支撑电解质,精确测定Cu+2与l -组氨酸之间的金属配体比例。在CV电位窗口设置在+0.6到-0.4V之间,记录伏安图。扫描速率从50mV/s到300mV/s,记录伏安图。用循环伏安法分析了复合材料的界面性能,并在玻碳电极(GCE)上记录了07个循环的循环伏安图,结果表明阳极峰和阴极峰的峰值电流强度没有变化。此外,没有观察到任何峰前或峰后。这些解释表明,在玻碳电极(GCE)表面,反应物和生成物不参与吸附-解吸过程。说明该系统为扩散控制过程。Cu+2与l -组氨酸的相互作用在循环伏安法中尚未见报道。此外,本研究还从理论角度研究了Cu+2与l -组氨酸络合物的结构。采用DFT方法对Cu+2与l -组氨酸配合物进行了优化,结果表明Cu+2与l -组氨酸配合物分别以1:2的比例呈方形平面结构稳定存在。计算得到的结构与实验结果有一定的相关性,Cu+2与l -组氨酸的1:2比例配合物的伏安图表明其存在于正方形平面几何结构中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
41
审稿时长
3.4 months
期刊介绍: This journal covers different research areas in the field of Chemistry. These include; Analytical Chemistry, Applied Chemistry, Biochemistry, Environmental Chemistry, Industrial Chemistry, Inorganic Chemistry, Organic Chemistry and Physical Chemistry. The journal publishes full length articles and Reviews from researchers in academia in addition to featuring comments. Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry.
期刊最新文献
TDDFT-DFT Theoretical Method and Topological Analysis to the Behavior Understanding of Two Tungsten Carbonyl Complexes Cholinesterase Inhibiting Terpenoid from Albizia kalkora Direct Enantioseparation of Lorlatinib Enantiomers by Liquid Chromatography on a Chiralpak IB Column Identification and Pharmacological Evaluation of Syzygium cumini Derived Fixed Oils Assessing the Effectiveness of Saponins from Alfalfa (Medicago sativa L.) to Mitigate Cypermethrin Residues in Apples
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1