Xuemei Yang and Xiaohua Wang Xuemei Yang and Xiaohua Wang
{"title":"Reduction Reactions of CO2 on Rutile TiO2 (110) Nanosheet via Coordination Activation","authors":"Xuemei Yang and Xiaohua Wang Xuemei Yang and Xiaohua Wang","doi":"10.52568/001180/jcsp/44.06.2022","DOIUrl":null,"url":null,"abstract":"Based on the previous coordination catalysis theory, the active site on the surface of transition metal oxides can activate the CO2 molecule. Ultrathin two-dimensional (2D) rutile TiO2 nanosheet with (110) crystal face as the main exposed surface has many active sites of Ti3+ and O vacancy, which have some synergistic effects to greatly reduce the dissociation energy of CO2. Following previous assumptions, four possible reduction processes of CO2 on rutile TiO2 (110) surface were systematically assessed by density functional theory (DFT) simulations. The reduction reactions of CO2 along I faces difficultly in proceeding due to the relatively weak interaction between CO2 and the active surface. Additionally, along III, the adsorption configuration of CO2 in the pristine state has huge distinctions with the model that suggests that the defined route is unlikely to occur on the rutile TiO2 (110) surface. However, through carefully comparing the energy differences as well as transition state searching, the reduction reaction along II has a high probability of finishing and finally generating HCOOH on the surface owing to the minimal energy differences and low activation barrier. Furthermore, the reduction reaction of CO2 to CH4 guided along IV is predicted to more easily take place with the assistance of O vacancy on the active surface. The synergistic action among Ti3+ site, O vacancy, and H+ can aid in fixing molecular CO2 by breaking the strong bond of C=O in CO2 and generating different fuels via coordination activation. This work will not only provide strong theoretical support to previous assumptions but can also lighten the routes to explore more active catalysis towards the reduction of CO2.","PeriodicalId":17253,"journal":{"name":"Journal of the chemical society of pakistan","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the chemical society of pakistan","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.52568/001180/jcsp/44.06.2022","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Based on the previous coordination catalysis theory, the active site on the surface of transition metal oxides can activate the CO2 molecule. Ultrathin two-dimensional (2D) rutile TiO2 nanosheet with (110) crystal face as the main exposed surface has many active sites of Ti3+ and O vacancy, which have some synergistic effects to greatly reduce the dissociation energy of CO2. Following previous assumptions, four possible reduction processes of CO2 on rutile TiO2 (110) surface were systematically assessed by density functional theory (DFT) simulations. The reduction reactions of CO2 along I faces difficultly in proceeding due to the relatively weak interaction between CO2 and the active surface. Additionally, along III, the adsorption configuration of CO2 in the pristine state has huge distinctions with the model that suggests that the defined route is unlikely to occur on the rutile TiO2 (110) surface. However, through carefully comparing the energy differences as well as transition state searching, the reduction reaction along II has a high probability of finishing and finally generating HCOOH on the surface owing to the minimal energy differences and low activation barrier. Furthermore, the reduction reaction of CO2 to CH4 guided along IV is predicted to more easily take place with the assistance of O vacancy on the active surface. The synergistic action among Ti3+ site, O vacancy, and H+ can aid in fixing molecular CO2 by breaking the strong bond of C=O in CO2 and generating different fuels via coordination activation. This work will not only provide strong theoretical support to previous assumptions but can also lighten the routes to explore more active catalysis towards the reduction of CO2.
期刊介绍:
This journal covers different research areas in the field of Chemistry. These include; Analytical Chemistry, Applied Chemistry, Biochemistry, Environmental Chemistry, Industrial Chemistry, Inorganic Chemistry, Organic Chemistry and Physical Chemistry. The journal publishes full length articles and Reviews from researchers in academia in addition to featuring comments. Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry.