Reduction Reactions of CO2 on Rutile TiO2 (110) Nanosheet via Coordination Activation

IF 0.6 4区 化学 Q4 CHEMISTRY, MULTIDISCIPLINARY Journal of the chemical society of pakistan Pub Date : 2022-01-01 DOI:10.52568/001180/jcsp/44.06.2022
Xuemei Yang and Xiaohua Wang Xuemei Yang and Xiaohua Wang
{"title":"Reduction Reactions of CO2 on Rutile TiO2 (110) Nanosheet via Coordination Activation","authors":"Xuemei Yang and Xiaohua Wang Xuemei Yang and Xiaohua Wang","doi":"10.52568/001180/jcsp/44.06.2022","DOIUrl":null,"url":null,"abstract":"Based on the previous coordination catalysis theory, the active site on the surface of transition metal oxides can activate the CO2 molecule. Ultrathin two-dimensional (2D) rutile TiO2 nanosheet with (110) crystal face as the main exposed surface has many active sites of Ti3+ and O vacancy, which have some synergistic effects to greatly reduce the dissociation energy of CO2. Following previous assumptions, four possible reduction processes of CO2 on rutile TiO2 (110) surface were systematically assessed by density functional theory (DFT) simulations. The reduction reactions of CO2 along I faces difficultly in proceeding due to the relatively weak interaction between CO2 and the active surface. Additionally, along III, the adsorption configuration of CO2 in the pristine state has huge distinctions with the model that suggests that the defined route is unlikely to occur on the rutile TiO2 (110) surface. However, through carefully comparing the energy differences as well as transition state searching, the reduction reaction along II has a high probability of finishing and finally generating HCOOH on the surface owing to the minimal energy differences and low activation barrier. Furthermore, the reduction reaction of CO2 to CH4 guided along IV is predicted to more easily take place with the assistance of O vacancy on the active surface. The synergistic action among Ti3+ site, O vacancy, and H+ can aid in fixing molecular CO2 by breaking the strong bond of C=O in CO2 and generating different fuels via coordination activation. This work will not only provide strong theoretical support to previous assumptions but can also lighten the routes to explore more active catalysis towards the reduction of CO2.","PeriodicalId":17253,"journal":{"name":"Journal of the chemical society of pakistan","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the chemical society of pakistan","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.52568/001180/jcsp/44.06.2022","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Based on the previous coordination catalysis theory, the active site on the surface of transition metal oxides can activate the CO2 molecule. Ultrathin two-dimensional (2D) rutile TiO2 nanosheet with (110) crystal face as the main exposed surface has many active sites of Ti3+ and O vacancy, which have some synergistic effects to greatly reduce the dissociation energy of CO2. Following previous assumptions, four possible reduction processes of CO2 on rutile TiO2 (110) surface were systematically assessed by density functional theory (DFT) simulations. The reduction reactions of CO2 along I faces difficultly in proceeding due to the relatively weak interaction between CO2 and the active surface. Additionally, along III, the adsorption configuration of CO2 in the pristine state has huge distinctions with the model that suggests that the defined route is unlikely to occur on the rutile TiO2 (110) surface. However, through carefully comparing the energy differences as well as transition state searching, the reduction reaction along II has a high probability of finishing and finally generating HCOOH on the surface owing to the minimal energy differences and low activation barrier. Furthermore, the reduction reaction of CO2 to CH4 guided along IV is predicted to more easily take place with the assistance of O vacancy on the active surface. The synergistic action among Ti3+ site, O vacancy, and H+ can aid in fixing molecular CO2 by breaking the strong bond of C=O in CO2 and generating different fuels via coordination activation. This work will not only provide strong theoretical support to previous assumptions but can also lighten the routes to explore more active catalysis towards the reduction of CO2.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
配位活化下CO2在金红石型TiO2(110)纳米片上的还原反应
根据以往的配位催化理论,过渡金属氧化物表面的活性位点可以激活CO2分子。以(110)晶面为主要暴露表面的超薄二维(2D)金红石型TiO2纳米片具有许多Ti3+和O空位的活性位点,它们具有一定的协同作用,大大降低了CO2的解离能。在上述假设的基础上,通过密度泛函理论(DFT)模拟,系统评估了CO2在金红石型TiO2(110)表面的四种可能还原过程。由于CO2与活性表面的相互作用相对较弱,使得CO2沿I面的还原反应难以进行。此外,沿着III,原始状态下CO2的吸附构型与模型存在巨大差异,这表明所定义的路线不太可能发生在金红石型TiO2(110)表面。然而,通过仔细比较能量差和寻找过渡态,由于能量差最小和激活势垒低,沿着II的还原反应完成并最终在表面生成HCOOH的可能性很大。此外,预测在活性表面O空位的帮助下,沿IV引导的CO2到CH4的还原反应更容易发生。Ti3+位、O空位和H+之间的协同作用可以通过破坏CO2中C=O的强键来固定CO2分子,并通过配位活化产生不同的燃料。这项工作不仅将为之前的假设提供强有力的理论支持,而且可以为探索更活跃的CO2减排催化途径提供思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
41
审稿时长
3.4 months
期刊介绍: This journal covers different research areas in the field of Chemistry. These include; Analytical Chemistry, Applied Chemistry, Biochemistry, Environmental Chemistry, Industrial Chemistry, Inorganic Chemistry, Organic Chemistry and Physical Chemistry. The journal publishes full length articles and Reviews from researchers in academia in addition to featuring comments. Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry.
期刊最新文献
TDDFT-DFT Theoretical Method and Topological Analysis to the Behavior Understanding of Two Tungsten Carbonyl Complexes Cholinesterase Inhibiting Terpenoid from Albizia kalkora Direct Enantioseparation of Lorlatinib Enantiomers by Liquid Chromatography on a Chiralpak IB Column Identification and Pharmacological Evaluation of Syzygium cumini Derived Fixed Oils Assessing the Effectiveness of Saponins from Alfalfa (Medicago sativa L.) to Mitigate Cypermethrin Residues in Apples
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1