Mumtaz Hussain Mumtaz Hussain, Maheem Farid Maheem Farid, Sumbal Sumbal, Nabila Ali Nabila Ali, Savira Karam Savira Karam, and Muhammad Azam Khan and Muhammad Azam Khan
{"title":"Removal of Food Dye Tartrazine (E102) from Aqueous Solution using ZnO and CuO-TiO2 as Photocatalysts","authors":"Mumtaz Hussain Mumtaz Hussain, Maheem Farid Maheem Farid, Sumbal Sumbal, Nabila Ali Nabila Ali, Savira Karam Savira Karam, and Muhammad Azam Khan and Muhammad Azam Khan","doi":"10.52568/001283/jcsp/45.04.2023","DOIUrl":null,"url":null,"abstract":"Tartrazine dye has a major role in food as well as in other industrial products, like cosmetics, personal care products, pharmaceutical products and many more, therefore it is the cause of many environmental pollutions particularly water pollution. Its removal from water bodies is almost impossible with traditional techniques, because of heterogeneity in its composition. This investigation was carried out to examine the photo-catalytic degradation of food dye tartrazine (E102) from its aqueous solution, using ZnO (zinc oxide) and mixed CuO-TiO2 (copper oxide-titanium dioxide) as photo-catalysts at room temperature. The influence of several parameters, such as pH of medium, time of irradiation, concentration of dye solution and amount of catalyst was investigated. Kinetic analysis was also carried out using Langmuir – Hinshelwood approach. Maximum Photo-Catalytic Degradation (PCD) of E102 was observed to be at pH 1. Similarly significant rise in the degradation of E102 was observed with the time of irradiation, concentration of dye solution and amount of catalyst. From the results obtained it was observed that ZnO and CuO-TiO2 are effective photo-catalysts for the removal of E102 from its aqueous solution. However ZnO was observed to be more effective than CuO-TiO2 in the degradation of E102 from aqueous solution.","PeriodicalId":17253,"journal":{"name":"Journal of the chemical society of pakistan","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the chemical society of pakistan","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.52568/001283/jcsp/45.04.2023","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Tartrazine dye has a major role in food as well as in other industrial products, like cosmetics, personal care products, pharmaceutical products and many more, therefore it is the cause of many environmental pollutions particularly water pollution. Its removal from water bodies is almost impossible with traditional techniques, because of heterogeneity in its composition. This investigation was carried out to examine the photo-catalytic degradation of food dye tartrazine (E102) from its aqueous solution, using ZnO (zinc oxide) and mixed CuO-TiO2 (copper oxide-titanium dioxide) as photo-catalysts at room temperature. The influence of several parameters, such as pH of medium, time of irradiation, concentration of dye solution and amount of catalyst was investigated. Kinetic analysis was also carried out using Langmuir – Hinshelwood approach. Maximum Photo-Catalytic Degradation (PCD) of E102 was observed to be at pH 1. Similarly significant rise in the degradation of E102 was observed with the time of irradiation, concentration of dye solution and amount of catalyst. From the results obtained it was observed that ZnO and CuO-TiO2 are effective photo-catalysts for the removal of E102 from its aqueous solution. However ZnO was observed to be more effective than CuO-TiO2 in the degradation of E102 from aqueous solution.
期刊介绍:
This journal covers different research areas in the field of Chemistry. These include; Analytical Chemistry, Applied Chemistry, Biochemistry, Environmental Chemistry, Industrial Chemistry, Inorganic Chemistry, Organic Chemistry and Physical Chemistry. The journal publishes full length articles and Reviews from researchers in academia in addition to featuring comments. Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry.