A hybrid pretreatment strategy for delignification of Aloe vera processing waste and its effectiveness towards saccharification

Q3 Biochemistry, Genetics and Molecular Biology Journal of Advanced Biotechnology and Experimental Therapeutics Pub Date : 2022-01-01 DOI:10.5455/jabet.2022.d134
Rajeswari Gunasekaran, S. Jacob
{"title":"A hybrid pretreatment strategy for delignification of Aloe vera processing waste and its effectiveness towards saccharification","authors":"Rajeswari Gunasekaran, S. Jacob","doi":"10.5455/jabet.2022.d134","DOIUrl":null,"url":null,"abstract":"A copious amount of rigid Aloe vera leaf rind (AVLR) has been produced from the aloe gel processing industries are majorly disposed as wastes since it has no commercial value. The cell wall compositional analysis revealed that significant quantity of cellulose (46% ± 0.76, w/w) and hemicellulose (18.5% ± 0.24, w/w) which justifies as potent source for bioethanol production. However, high lignin content (13.95% ± 0.45, w/w) hinders depolymerization of polysaccharides into fermentable sugars and subsequent fermentation for ethanol production. In the present study, microwave-assisted alkali (MAA) pretreatment of AVLR biomass was carried out by varying the power level (160 W, 320 W and 480 W) which showed a maximum delignification (66.38%) at 320 W. Scanning Electron Microscope (SEM), Fourier-transform infrared spectroscopy (FTIR) and X-ray powder diffraction (XRD) based characterization were performed to study the extent of delignification in AVLR biomass. The Gas Chromatography-Mass Spectrometry (GC-MS) analysis was performed for the liquid hydrolysate obtained after MAA pretreatment at 320 W indicated that the hydrolysate contained more of oxidized phenolic hydrocarbons that can be potentially utilized for other value-added product synthesis. A comparison of saccharification efficiency was performed using two different cellulase producers namely Aspergillus niger and Aspergillus sp. A maximum saccharification of 68.5% ± 0.34 was achieved by Aspergillus sp., that was 2.8% higher on comparing with untreated AVLR biomass. This indicates the feasibility of MAA pretreatment for AVLR biomass in order to improve the accessibility of fermentable sugars available for ethanol production.","PeriodicalId":36275,"journal":{"name":"Journal of Advanced Biotechnology and Experimental Therapeutics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Biotechnology and Experimental Therapeutics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5455/jabet.2022.d134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

A copious amount of rigid Aloe vera leaf rind (AVLR) has been produced from the aloe gel processing industries are majorly disposed as wastes since it has no commercial value. The cell wall compositional analysis revealed that significant quantity of cellulose (46% ± 0.76, w/w) and hemicellulose (18.5% ± 0.24, w/w) which justifies as potent source for bioethanol production. However, high lignin content (13.95% ± 0.45, w/w) hinders depolymerization of polysaccharides into fermentable sugars and subsequent fermentation for ethanol production. In the present study, microwave-assisted alkali (MAA) pretreatment of AVLR biomass was carried out by varying the power level (160 W, 320 W and 480 W) which showed a maximum delignification (66.38%) at 320 W. Scanning Electron Microscope (SEM), Fourier-transform infrared spectroscopy (FTIR) and X-ray powder diffraction (XRD) based characterization were performed to study the extent of delignification in AVLR biomass. The Gas Chromatography-Mass Spectrometry (GC-MS) analysis was performed for the liquid hydrolysate obtained after MAA pretreatment at 320 W indicated that the hydrolysate contained more of oxidized phenolic hydrocarbons that can be potentially utilized for other value-added product synthesis. A comparison of saccharification efficiency was performed using two different cellulase producers namely Aspergillus niger and Aspergillus sp. A maximum saccharification of 68.5% ± 0.34 was achieved by Aspergillus sp., that was 2.8% higher on comparing with untreated AVLR biomass. This indicates the feasibility of MAA pretreatment for AVLR biomass in order to improve the accessibility of fermentable sugars available for ethanol production.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
芦荟加工废弃物脱木质素的混合预处理策略及其对糖化的效果
由于芦荟凝胶加工工业生产了大量的硬质芦荟叶皮(AVLR),由于它没有商业价值,因此主要作为废物处理。细胞壁成分分析显示,纤维素(46%±0.76,w/w)和半纤维素(18.5%±0.24,w/w)含量显著,证明其是生物乙醇生产的有效来源。然而,高木质素含量(13.95%±0.45,w/w)阻碍了多糖解聚成可发酵糖并随后发酵生产乙醇。采用不同功率(160 W、320 W和480 W)对AVLR生物质进行微波辅助碱(MAA)预处理,结果表明,在320 W时脱木率最高(66.38%)。采用扫描电镜(SEM)、傅里叶变换红外光谱(FTIR)和x射线粉末衍射(XRD)等表征方法研究了AVLR生物质脱木质素的程度。采用气相色谱-质谱(GC-MS)对320 W MAA预处理后的水解液进行分析,结果表明,水解液中含有较多的氧化酚类化合物,可用于其他增值产品的合成。比较了两种不同的纤维素酶产生菌黑曲霉和曲霉的糖化效率。曲霉的最大糖化率为68.5%±0.34,比未处理的AVLR生物量高2.8%。这表明MAA预处理AVLR生物质以提高乙醇生产可发酵糖的可及性是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Advanced Biotechnology and Experimental Therapeutics
Journal of Advanced Biotechnology and Experimental Therapeutics Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
1.90
自引率
0.00%
发文量
41
审稿时长
8 weeks
期刊最新文献
Assessment of antiproliferative and toxic effects of a peptide from Momordica dioica using in vitro and in vivo studies Investigation of the relationship between matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase with SARS CoV-2 infections Anti-inflammatory and anti-microbial activities of the phytochemicals isolated from various parts of broccoli wastes Epidemiological burden, risk factors, and recent therapeutic advances in chronic obstructive pulmonary disease The potentials of Pangi leaf extract for Aedes spp. mosquito control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1