S. Virk, W. Porter, J. Snider, J. Whitaker, G. Rains, Changying Li
{"title":"Influence of Seeding Rate, Planter Downforce and Cultivar on Crop Emergence and Yield in Singulated and Hill-Dropped Cotton","authors":"S. Virk, W. Porter, J. Snider, J. Whitaker, G. Rains, Changying Li","doi":"10.56454/wrjs4850","DOIUrl":null,"url":null,"abstract":"Cotton (Gossypium hirsutum L.) growers are motivated to reduce seeding rates due to increased technology fees associated with improved transgenic cotton cultivars. Advances in planting machinery have improved precision of seed metering and seed placement in recent years. A two-year study was conducted to evaluate the effect of seeding rate, planter downforce, and cultivar on crop emergence and lint yield in cotton planted as singulated and hill-drop (two seed hill-1) configuration. Study treatments consisted of two seeding rates (71,660 and 107,490 seed ha-1), two to three planter downforces (0, 445 and 890 N in 2017; 0 and 890 N in 2018) and two cotton cultivars (representing a large-seeded and small-seeded cultivar, 9,259 - 10,582 and 11,244 - 14,330 seed kg-1, respectively) arranged in a strip-split plot design in both seeding configurations. Crop emergence and lint yield in the middle two rows (four-row plots) were measured to evaluate treatment effects among seeding configurations. Results showed that seeding rate and cultivar did not affect (p>0.05) crop emergence and lint yield in both singulated and hill-drop cotton. Crop emergence varied between the two years due to differences in field tillage conditions. Planter downforce affected crop emergence in singulated cotton but not in hill-drop cotton during both years. Field tillage conditions also influenced downforce effect on crop emergence. Selection of an optimal planter downforce had more significant effect (p<0.05) on singulated cotton than hill-dropped cotton. Results showed that large-seeded cultivars can be utilized to attain a high crop emergence early in the season which can help in minimizing production risks associated with poor stand establishment. High seed and technology fees incurred by growers can be effectively reduced by planting lower seeding rates - given an adequate stand establishment is attained using appropriate planter setup including downforce and cultivar selection.","PeriodicalId":15558,"journal":{"name":"Journal of cotton science","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cotton science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56454/wrjs4850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Cotton (Gossypium hirsutum L.) growers are motivated to reduce seeding rates due to increased technology fees associated with improved transgenic cotton cultivars. Advances in planting machinery have improved precision of seed metering and seed placement in recent years. A two-year study was conducted to evaluate the effect of seeding rate, planter downforce, and cultivar on crop emergence and lint yield in cotton planted as singulated and hill-drop (two seed hill-1) configuration. Study treatments consisted of two seeding rates (71,660 and 107,490 seed ha-1), two to three planter downforces (0, 445 and 890 N in 2017; 0 and 890 N in 2018) and two cotton cultivars (representing a large-seeded and small-seeded cultivar, 9,259 - 10,582 and 11,244 - 14,330 seed kg-1, respectively) arranged in a strip-split plot design in both seeding configurations. Crop emergence and lint yield in the middle two rows (four-row plots) were measured to evaluate treatment effects among seeding configurations. Results showed that seeding rate and cultivar did not affect (p>0.05) crop emergence and lint yield in both singulated and hill-drop cotton. Crop emergence varied between the two years due to differences in field tillage conditions. Planter downforce affected crop emergence in singulated cotton but not in hill-drop cotton during both years. Field tillage conditions also influenced downforce effect on crop emergence. Selection of an optimal planter downforce had more significant effect (p<0.05) on singulated cotton than hill-dropped cotton. Results showed that large-seeded cultivars can be utilized to attain a high crop emergence early in the season which can help in minimizing production risks associated with poor stand establishment. High seed and technology fees incurred by growers can be effectively reduced by planting lower seeding rates - given an adequate stand establishment is attained using appropriate planter setup including downforce and cultivar selection.
期刊介绍:
The multidisciplinary, refereed journal contains articles that improve our understanding of cotton science. Publications may be compilations of original research, syntheses, reviews, or notes on original research or new techniques or equipment.