{"title":"Instantaneous Gain in Video Head Impulse Test: A Reliability Study","authors":"Burak Kabiş, H. Tutar, B. Gündüz, S. Aksoy","doi":"10.4274/tao.2022.2022-1-4","DOIUrl":null,"url":null,"abstract":"Objective: Vestibulo-ocular reflex gain at 40, 60, and 80 ms following the head movement start is calculated as the instantaneous gain. The purpose of this study was to investigate the reliability of instantaneous gain values at 40, 60, and 80 ms with testing and retesting in healthy adults. Methods: The study was conducted with Interacoustics EyeSeeCam vHIT (Interacoustics, Denmark), and 42 healthy adults were evaluated twice at half-hour intervals (test and retest) by the same practitioner. Agreement of mean gain, gain asymmetry, and instantaneous gain was evaluated using a paired samples t-test. Results: Mean age of the participants was 33.62±11.17; 38.1% were male and 61.9% were female. In the degree of the agreement, paired sample correlation (r) between test and retest results of the horizontal semicircular canals was found to be higher than those of the vertical semicircular canals. Moreover, the highest correlation between test and retest for instantaneous gain, calculated for only horizontal semicircular canals, was found at 80 ms on each side (0.791; 0.838, right and left, respectively), while the lowest correlation between these parameters was found between the gain asymmetry values. Conclusion: The video head impulse test used in studies calculates the mean gain in approximately at 60 ms. However, the higher correlation between mean gain values at 80 ms in our findings indicates that gain calculation strategies and techniques for latencies should be discussed. Additionally, the low correlation of vertical semicircular canals for mean gain and gain asymmetry between semicircular canal pairs, which clearly shows that more standard and more reliable methods should be developed.","PeriodicalId":44240,"journal":{"name":"Turkish Archives of Otorhinolaryngology","volume":"3 1 1","pages":"16 - 22"},"PeriodicalIF":0.7000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Archives of Otorhinolaryngology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4274/tao.2022.2022-1-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OTORHINOLARYNGOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Vestibulo-ocular reflex gain at 40, 60, and 80 ms following the head movement start is calculated as the instantaneous gain. The purpose of this study was to investigate the reliability of instantaneous gain values at 40, 60, and 80 ms with testing and retesting in healthy adults. Methods: The study was conducted with Interacoustics EyeSeeCam vHIT (Interacoustics, Denmark), and 42 healthy adults were evaluated twice at half-hour intervals (test and retest) by the same practitioner. Agreement of mean gain, gain asymmetry, and instantaneous gain was evaluated using a paired samples t-test. Results: Mean age of the participants was 33.62±11.17; 38.1% were male and 61.9% were female. In the degree of the agreement, paired sample correlation (r) between test and retest results of the horizontal semicircular canals was found to be higher than those of the vertical semicircular canals. Moreover, the highest correlation between test and retest for instantaneous gain, calculated for only horizontal semicircular canals, was found at 80 ms on each side (0.791; 0.838, right and left, respectively), while the lowest correlation between these parameters was found between the gain asymmetry values. Conclusion: The video head impulse test used in studies calculates the mean gain in approximately at 60 ms. However, the higher correlation between mean gain values at 80 ms in our findings indicates that gain calculation strategies and techniques for latencies should be discussed. Additionally, the low correlation of vertical semicircular canals for mean gain and gain asymmetry between semicircular canal pairs, which clearly shows that more standard and more reliable methods should be developed.