{"title":"Adaptive Randomization via Mahalanobis Distance","authors":"Yichen Qin, Y. Li, Wei Ma, Haoyu Yang, F. Hu","doi":"10.5705/ss.202020.0440","DOIUrl":null,"url":null,"abstract":": In comparative studies, researchers often seek an optimal covariate balance. However, chance imbalance still exists in randomized experiments, and becomes more serious as the number of covariates increases. To address this issue, we introduce a new randomization procedure, called adaptive randomization via the Mahalanobis distance (ARM). The proposed method allocates units sequentially and adaptively, using information on the current level of imbalance and the incoming unit’s covariate. Theoretical results and numerical comparison show that with a large number of covariates or a large number of units, the proposed method shows substantial advantages over traditional methods in terms of the covariate balance, estimation accuracy, hypothesis testing power, and computational time. The proposed method attains the optimal covariate balance, in the sense that the estimated treatment effect attains its minimum variance asymptotically, and can be applied in both causal inference and clinical trials. Lastly, numerical stud-1","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Sinica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5705/ss.202020.0440","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2
Abstract
: In comparative studies, researchers often seek an optimal covariate balance. However, chance imbalance still exists in randomized experiments, and becomes more serious as the number of covariates increases. To address this issue, we introduce a new randomization procedure, called adaptive randomization via the Mahalanobis distance (ARM). The proposed method allocates units sequentially and adaptively, using information on the current level of imbalance and the incoming unit’s covariate. Theoretical results and numerical comparison show that with a large number of covariates or a large number of units, the proposed method shows substantial advantages over traditional methods in terms of the covariate balance, estimation accuracy, hypothesis testing power, and computational time. The proposed method attains the optimal covariate balance, in the sense that the estimated treatment effect attains its minimum variance asymptotically, and can be applied in both causal inference and clinical trials. Lastly, numerical stud-1
期刊介绍:
Statistica Sinica aims to meet the needs of statisticians in a rapidly changing world. It provides a forum for the publication of innovative work of high quality in all areas of statistics, including theory, methodology and applications. The journal encourages the development and principled use of statistical methodology that is relevant for society, science and technology.