Multi-response Regression for Block-missing Multi-modal Data without Imputation.

IF 1.5 3区 数学 Q2 STATISTICS & PROBABILITY Statistica Sinica Pub Date : 2024-04-01 DOI:10.5705/ss.202021.0170
Haodong Wang, Quefeng Li, Yufeng Liu
{"title":"Multi-response Regression for Block-missing Multi-modal Data without Imputation.","authors":"Haodong Wang, Quefeng Li, Yufeng Liu","doi":"10.5705/ss.202021.0170","DOIUrl":null,"url":null,"abstract":"<p><p>Multi-modal data are prevalent in many scientific fields. In this study, we consider the parameter estimation and variable selection for a multi-response regression using block-missing multi-modal data. Our method allows the dimensions of both the responses and the predictors to be large, and the responses to be incomplete and correlated, a common practical problem in high-dimensional settings. Our proposed method uses two steps to make a prediction from a multi-response linear regression model with block-missing multi-modal predictors. In the first step, without imputing missing data, we use all available data to estimate the covariance matrix of the predictors and the cross-covariance matrix between the predictors and the responses. In the second step, we use these matrices and a penalized method to simultaneously estimate the precision matrix of the response vector, given the predictors, and the sparse regression parameter matrix. Lastly, we demonstrate the effectiveness of the proposed method using theoretical studies, simulated examples, and an analysis of a multi-modal imaging data set from the Alzheimer's Disease Neuroimaging Initiative.</p>","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":"1 1","pages":"527-546"},"PeriodicalIF":1.5000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11035992/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Sinica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5705/ss.202021.0170","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-modal data are prevalent in many scientific fields. In this study, we consider the parameter estimation and variable selection for a multi-response regression using block-missing multi-modal data. Our method allows the dimensions of both the responses and the predictors to be large, and the responses to be incomplete and correlated, a common practical problem in high-dimensional settings. Our proposed method uses two steps to make a prediction from a multi-response linear regression model with block-missing multi-modal predictors. In the first step, without imputing missing data, we use all available data to estimate the covariance matrix of the predictors and the cross-covariance matrix between the predictors and the responses. In the second step, we use these matrices and a penalized method to simultaneously estimate the precision matrix of the response vector, given the predictors, and the sparse regression parameter matrix. Lastly, we demonstrate the effectiveness of the proposed method using theoretical studies, simulated examples, and an analysis of a multi-modal imaging data set from the Alzheimer's Disease Neuroimaging Initiative.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对块缺失多模态数据的多响应回归,无需估算。
多模态数据在很多科学领域都很普遍。在本研究中,我们考虑了使用块缺失多模态数据进行多响应回归的参数估计和变量选择。我们的方法允许响应和预测因子的维度都很大,并且响应是不完整和相关的,这是高维环境中常见的实际问题。我们提出的方法采用两个步骤,对带有块缺失多模态预测因子的多响应线性回归模型进行预测。第一步,在不计算缺失数据的情况下,我们使用所有可用数据来估计预测因子的协方差矩阵以及预测因子与响应之间的交叉协方差矩阵。在第二步中,我们使用这些矩阵和一种惩罚性方法来同时估计响应向量的精度矩阵(给定预测因子)和稀疏回归参数矩阵。最后,我们通过理论研究、模拟示例以及对阿尔茨海默病神经成像计划多模态成像数据集的分析,证明了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistica Sinica
Statistica Sinica 数学-统计学与概率论
CiteScore
2.10
自引率
0.00%
发文量
82
审稿时长
10.5 months
期刊介绍: Statistica Sinica aims to meet the needs of statisticians in a rapidly changing world. It provides a forum for the publication of innovative work of high quality in all areas of statistics, including theory, methodology and applications. The journal encourages the development and principled use of statistical methodology that is relevant for society, science and technology.
期刊最新文献
Multi-response Regression for Block-missing Multi-modal Data without Imputation. On the Efficiency of Composite Likelihood Estimation for Gaussian Spatial Processes Adaptive Randomization via Mahalanobis Distance Unbiased Boosting Estimation for Censored Survival Data Parsimonious Tensor Discriminant Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1