{"title":"Unbiased Boosting Estimation for Censored Survival Data","authors":"Li‐Pang Chen, G. Yi","doi":"10.5705/ss.202021.0050","DOIUrl":null,"url":null,"abstract":": Boosting methods have been broadly discussed for various settings, and most methods handle data with complete observations. Although some methods are available for survival data with censored responses, they tend to assume a specific model for the survival process, and most provide numerical implementation procedures without rigorous theoretical justifications. In this paper, we develop an unbiased boosting estimation method for censored survival data, without assuming an explicit model, and explore three strategies for adjusting the loss functions, while accommodating censoring effects. We implement the proposed method using a functional gradient descent algorithm, and rigorously establish our theoretical results, including the consistency and optimization convergence. Our numerical studies show that the proposed method exhibits satisfactory performance in finite-sample settings.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5705/ss.202021.0050","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
: Boosting methods have been broadly discussed for various settings, and most methods handle data with complete observations. Although some methods are available for survival data with censored responses, they tend to assume a specific model for the survival process, and most provide numerical implementation procedures without rigorous theoretical justifications. In this paper, we develop an unbiased boosting estimation method for censored survival data, without assuming an explicit model, and explore three strategies for adjusting the loss functions, while accommodating censoring effects. We implement the proposed method using a functional gradient descent algorithm, and rigorously establish our theoretical results, including the consistency and optimization convergence. Our numerical studies show that the proposed method exhibits satisfactory performance in finite-sample settings.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.