Impact Analysis for Spatial Autoregressive Models: With Application to Air Pollution in China

IF 1.5 3区 数学 Q2 STATISTICS & PROBABILITY Statistica Sinica Pub Date : 2024-01-01 DOI:10.5705/ss.202021.0119
Hsuan-Yu Chang, Jihai Yu
{"title":"Impact Analysis for Spatial Autoregressive Models: With Application to Air Pollution in China","authors":"Hsuan-Yu Chang, Jihai Yu","doi":"10.5705/ss.202021.0119","DOIUrl":null,"url":null,"abstract":": In this paper, we investigate impact analysis and its asymptotic inference for spatial autoregressive models. LeSage and Pace (2009) introduce impact analysis for spatial models and use Monte Carlo simulations to compute the dispersion. We propose to use the delta method, which enables us to obtain the dispersion in an explicit form. In addition, we provide the element-wise impact analysis. We first study the cross-sectional case, where various impacts are introduced to measure the interaction and feedback effects in a space dimension. We then study the spatial dynamic panel case with simultaneous spatial and dynamic feedback involved in the impacts. Monte Carlo results show that the proposed impact analysis has satisfactory finite sample properties. Finally, we apply impact analysis to investigate how meteorological factors and air pollutants affect PM 2 . 5 in Chinese cities.","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":"36 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Sinica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5705/ss.202021.0119","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

: In this paper, we investigate impact analysis and its asymptotic inference for spatial autoregressive models. LeSage and Pace (2009) introduce impact analysis for spatial models and use Monte Carlo simulations to compute the dispersion. We propose to use the delta method, which enables us to obtain the dispersion in an explicit form. In addition, we provide the element-wise impact analysis. We first study the cross-sectional case, where various impacts are introduced to measure the interaction and feedback effects in a space dimension. We then study the spatial dynamic panel case with simultaneous spatial and dynamic feedback involved in the impacts. Monte Carlo results show that the proposed impact analysis has satisfactory finite sample properties. Finally, we apply impact analysis to investigate how meteorological factors and air pollutants affect PM 2 . 5 in Chinese cities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
空间自回归模型对中国大气污染的影响分析
研究空间自回归模型的影响分析及其渐近推断。我们建议使用delta方法,它使我们能够以显式形式获得色散。此外,我们还提供元素影响分析。我们首先研究了横截面案例,其中引入了各种影响来测量空间维度上的相互作用和反馈效应。然后,我们研究了空间动态面板的情况下,同时空间和动态反馈的影响。蒙特卡罗结果表明,所提出的冲击分析具有令人满意的有限样本性质。最后,运用影响分析方法探讨气象因子和大气污染物对pm2的影响。5个在中国城市。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistica Sinica
Statistica Sinica 数学-统计学与概率论
CiteScore
2.10
自引率
0.00%
发文量
82
审稿时长
10.5 months
期刊介绍: Statistica Sinica aims to meet the needs of statisticians in a rapidly changing world. It provides a forum for the publication of innovative work of high quality in all areas of statistics, including theory, methodology and applications. The journal encourages the development and principled use of statistical methodology that is relevant for society, science and technology.
期刊最新文献
Multi-response Regression for Block-missing Multi-modal Data without Imputation. On the Efficiency of Composite Likelihood Estimation for Gaussian Spatial Processes Adaptive Randomization via Mahalanobis Distance Unbiased Boosting Estimation for Censored Survival Data Parsimonious Tensor Discriminant Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1