{"title":"Noise-aware Character Alignment for Extracting Transliteration Fragments","authors":"Katsuhito Sudoh, Shinsuke Mori, M. Nagata","doi":"10.5715/JNLP.21.1107","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel noise-aware character alignment method for automatically extracting transliteration fragments in phrase pairs that are extracted from parallel corpora. The proposed method extends a many-to-many Bayesian character alignment method by distinguishing transliteration (signal) parts from non-transliteration (noise) parts. The model can be trained efficiently by a state-based blocked Gibbs sampling algorithm with signal and noise states. The proposed method bootstraps statistical machine transliteration using the extracted transliteration fragments to train transliteration models. In experiments using Japanese-English patent data, the proposed method was able to extract transliteration fragments with much less noise than an IBM-model-based baseline, and achieved better transliteration performance than sample-wise extraction in transliteration bootstrapping.","PeriodicalId":16243,"journal":{"name":"Journal of Information Processing","volume":"21 1","pages":"1107-1131"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5715/JNLP.21.1107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1
Abstract
This paper proposes a novel noise-aware character alignment method for automatically extracting transliteration fragments in phrase pairs that are extracted from parallel corpora. The proposed method extends a many-to-many Bayesian character alignment method by distinguishing transliteration (signal) parts from non-transliteration (noise) parts. The model can be trained efficiently by a state-based blocked Gibbs sampling algorithm with signal and noise states. The proposed method bootstraps statistical machine transliteration using the extracted transliteration fragments to train transliteration models. In experiments using Japanese-English patent data, the proposed method was able to extract transliteration fragments with much less noise than an IBM-model-based baseline, and achieved better transliteration performance than sample-wise extraction in transliteration bootstrapping.