Sequential Reliability-Based Optimization with Support Vector Machines

Q4 Mathematics 计算力学学报 Pub Date : 2013-01-01 DOI:10.7511/JSLX201304005
Yijun Wang, Xiongqing Yu, Xiaoping Du
{"title":"Sequential Reliability-Based Optimization with Support Vector Machines","authors":"Yijun Wang, Xiongqing Yu, Xiaoping Du","doi":"10.7511/JSLX201304005","DOIUrl":null,"url":null,"abstract":"Traditional reliability-based design optimization(RBDO)is either computational intensive or not accurate enough.In this work,a new RBDO method based on Support Vector Machines(SVM)is proposed.For reliability analysis,SVM is used to create a surrogate model of the limit-state function at the Most Probable Point(MPP).The uniqueness of the new method is the use of the gradient of the limit-state function at the MPP.This guarantees that the surrogate model not only passes through the MPP but also is tangent to the limit-state function at the MPP.Then Importance Sampling(IS)is used to calculate the probability of failure based on the surrogate model.This treatment significantly improves the accuracy of reliability analysis.For optimization,the Sequential Optimization and Reliability Assessment(SORA)is employed,which decouples deterministic optimization from the SVM reliability analysis.The decoupling makes RBDO more efficient.The two examples show that the new method is more accurate with a moderately increased computational cost.","PeriodicalId":35794,"journal":{"name":"计算力学学报","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"计算力学学报","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.7511/JSLX201304005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional reliability-based design optimization(RBDO)is either computational intensive or not accurate enough.In this work,a new RBDO method based on Support Vector Machines(SVM)is proposed.For reliability analysis,SVM is used to create a surrogate model of the limit-state function at the Most Probable Point(MPP).The uniqueness of the new method is the use of the gradient of the limit-state function at the MPP.This guarantees that the surrogate model not only passes through the MPP but also is tangent to the limit-state function at the MPP.Then Importance Sampling(IS)is used to calculate the probability of failure based on the surrogate model.This treatment significantly improves the accuracy of reliability analysis.For optimization,the Sequential Optimization and Reliability Assessment(SORA)is employed,which decouples deterministic optimization from the SVM reliability analysis.The decoupling makes RBDO more efficient.The two examples show that the new method is more accurate with a moderately increased computational cost.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于支持向量机的序列可靠性优化
传统的基于可靠性的设计优化要么计算量大,要么精度不够。本文提出了一种基于支持向量机的RBDO方法。在可靠性分析中,利用支持向量机建立了最可能点极限状态函数的代理模型。新方法的独特之处在于利用了极限状态函数在MPP处的梯度。这保证了代理模型不仅通过MPP,而且与MPP处的极限状态函数相切。然后在代理模型的基础上,利用重要性抽样(IS)计算失效概率。这种处理方法显著提高了可靠性分析的准确性。优化采用顺序优化与可靠性评估(SORA)方法,将确定性优化与支持向量机可靠性分析解耦。解耦使得RBDO效率更高。两个算例表明,新方法在计算量适度增加的情况下精度更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
计算力学学报
计算力学学报 Engineering-Computational Mechanics
CiteScore
0.80
自引率
0.00%
发文量
3201
期刊最新文献
Eigenvalue problems in forced harmonic responses analysis in structural dynamics Finite element modelling of biogas process from coal Stochastic discrete element modelling of rough particles-a random normal interaction law Sequential Reliability-Based Optimization with Support Vector Machines Fast Dynamic Mesh Moving Based on Background Grid Morphing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1