P. I. Galanis, K. Savvas, V. A. Chernov, A. M. Butakova
{"title":"Reliability testing, noise and error correction of real quantum computing devices","authors":"P. I. Galanis, K. Savvas, V. A. Chernov, A. M. Butakova","doi":"10.5937/telfor2101041g","DOIUrl":null,"url":null,"abstract":"From Pharmacology to Cryptography and from Geology to Astronomy are some of the scientific fields in which Quantum Computing potentially will take off and fly high. Big Quantum Computing vendors invest a large amount of money in improving the hardware and they claim that soon enough a quantum program will be hundreds of thousands of times faster than a typical one we know nowadays. But still the reliability of such systems is the main obstacle. In this work, the reliability of real quantum devices is tested and techniques of noise and error correction are presented while measurement error mitigation is explored. In addition, a well-known string matching algorithm (Bernstein-Vazirani) was applied to the real quantum computing device in order to measure its accuracy and reliability. Simulated environments were also used in order to evaluate the results. The results obtained, even if these were not 100% accurate, are very promising which proves that even these days a quantum computer working side by side with a typical one is reliable and especially when error mitigation techniques are applied.","PeriodicalId":37719,"journal":{"name":"Telfor Journal","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Telfor Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5937/telfor2101041g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3
Abstract
From Pharmacology to Cryptography and from Geology to Astronomy are some of the scientific fields in which Quantum Computing potentially will take off and fly high. Big Quantum Computing vendors invest a large amount of money in improving the hardware and they claim that soon enough a quantum program will be hundreds of thousands of times faster than a typical one we know nowadays. But still the reliability of such systems is the main obstacle. In this work, the reliability of real quantum devices is tested and techniques of noise and error correction are presented while measurement error mitigation is explored. In addition, a well-known string matching algorithm (Bernstein-Vazirani) was applied to the real quantum computing device in order to measure its accuracy and reliability. Simulated environments were also used in order to evaluate the results. The results obtained, even if these were not 100% accurate, are very promising which proves that even these days a quantum computer working side by side with a typical one is reliable and especially when error mitigation techniques are applied.
期刊介绍:
The TELFOR Journal is an open access international scientific journal publishing improved and extended versions of the selected best papers initially reported at the annual TELFOR Conference (www.telfor.rs), papers invited by the Editorial Board, and papers submitted by authors themselves for publishing. All papers are subject to reviewing. The TELFOR Journal is published in the English language, with both electronic and printed versions. Being an IEEE co-supported publication, it will follow all the IEEE rules and procedures. The TELFOR Journal covers all the essential branches of modern telecommunications and information technology: Telecommunications Policy and Services, Telecommunications Networks, Radio Communications, Communications Systems, Signal Processing, Optical Communications, Applied Electromagnetics, Applied Electronics, Multimedia, Software Tools and Applications, as well as other fields related to ICT. This large spectrum of topics accounts for the rapid convergence through telecommunications of the underlying technologies towards the information and knowledge society. The Journal provides a medium for exchanging research results and technological achievements accomplished by the scientific community from academia and industry.