Doctor Versus Artificial Intelligence: Patient and Physician Evaluation of Large Language Model Responses to Rheumatology Patient Questions in a Cross-Sectional Study

IF 11.4 1区 医学 Q1 RHEUMATOLOGY Arthritis & Rheumatology Pub Date : 2023-10-30 DOI:10.1002/art.42737
Carrie Ye, Elric Zweck, Zechen Ma, Justin Smith, Steven Katz
{"title":"Doctor Versus Artificial Intelligence: Patient and Physician Evaluation of Large Language Model Responses to Rheumatology Patient Questions in a Cross-Sectional Study","authors":"Carrie Ye,&nbsp;Elric Zweck,&nbsp;Zechen Ma,&nbsp;Justin Smith,&nbsp;Steven Katz","doi":"10.1002/art.42737","DOIUrl":null,"url":null,"abstract":"<div>\n \n <section>\n \n <h3> Objective</h3>\n \n <p>The objective of the current study was to assess the quality of large language model (LLM) chatbot versus physician-generated responses to patient-generated rheumatology questions.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We conducted a single-center cross-sectional survey of rheumatology patients (n = 17) in Edmonton, Alberta, Canada. Patients evaluated LLM chatbot versus physician-generated responses for comprehensiveness and readability, with four rheumatologists also evaluating accuracy by using a Likert scale from 1 to 10 (1 being poor, 10 being excellent).</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Patients rated no significant difference between artificial intelligence (AI) and physician-generated responses in comprehensiveness (mean 7.12 ± SD 0.99 vs 7.52 ± 1.16; <i>P =</i> 0.1962) or readability (7.90 ± 0.90 vs 7.80 ± 0.75; <i>P =</i> 0.5905). Rheumatologists rated AI responses significantly poorer than physician responses on comprehensiveness (AI 5.52 ± 2.13 vs physician 8.76 ± 1.07; <i>P</i> &lt; 0.0001), readability (AI 7.85 ± 0.92 vs physician 8.75 ± 0.57; <i>P =</i> 0.0003), and accuracy (AI 6.48 ± 2.07 vs physician 9.08 ± 0.64; <i>P</i> &lt; 0.0001). The proportion of preference to AI- versus physician-generated responses by patients and physicians was 0.45 ± 0.18 and 0.15 ± 0.08, respectively (<i>P =</i> 0.0106). After learning that one answer for each question was AI generated, patients were able to correctly identify AI-generated answers at a lower proportion compared to physicians (0.49 ± 0.26 vs 0.97 ± 0.04; <i>P =</i> 0.0183). The average word count of AI answers was 69.10 ± 25.35 words, as compared to 98.83 ± 34.58 words for physician-generated responses (<i>P =</i> 0.0008).</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>Rheumatology patients rated AI-generated responses to patient questions similarly to physician-generated responses in terms of comprehensiveness, readability, and overall preference. However, rheumatologists rated AI responses significantly poorer than physician-generated responses, suggesting that LLM chatbot responses are inferior to physician responses, a difference that patients may not be aware of.</p>\n \n <div>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure>\n </div>\n </section>\n </div>","PeriodicalId":129,"journal":{"name":"Arthritis & Rheumatology","volume":"76 3","pages":"479-484"},"PeriodicalIF":11.4000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/art.42737","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arthritis & Rheumatology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/art.42737","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RHEUMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

The objective of the current study was to assess the quality of large language model (LLM) chatbot versus physician-generated responses to patient-generated rheumatology questions.

Methods

We conducted a single-center cross-sectional survey of rheumatology patients (n = 17) in Edmonton, Alberta, Canada. Patients evaluated LLM chatbot versus physician-generated responses for comprehensiveness and readability, with four rheumatologists also evaluating accuracy by using a Likert scale from 1 to 10 (1 being poor, 10 being excellent).

Results

Patients rated no significant difference between artificial intelligence (AI) and physician-generated responses in comprehensiveness (mean 7.12 ± SD 0.99 vs 7.52 ± 1.16; P = 0.1962) or readability (7.90 ± 0.90 vs 7.80 ± 0.75; P = 0.5905). Rheumatologists rated AI responses significantly poorer than physician responses on comprehensiveness (AI 5.52 ± 2.13 vs physician 8.76 ± 1.07; P < 0.0001), readability (AI 7.85 ± 0.92 vs physician 8.75 ± 0.57; P = 0.0003), and accuracy (AI 6.48 ± 2.07 vs physician 9.08 ± 0.64; P < 0.0001). The proportion of preference to AI- versus physician-generated responses by patients and physicians was 0.45 ± 0.18 and 0.15 ± 0.08, respectively (P = 0.0106). After learning that one answer for each question was AI generated, patients were able to correctly identify AI-generated answers at a lower proportion compared to physicians (0.49 ± 0.26 vs 0.97 ± 0.04; P = 0.0183). The average word count of AI answers was 69.10 ± 25.35 words, as compared to 98.83 ± 34.58 words for physician-generated responses (P = 0.0008).

Conclusion

Rheumatology patients rated AI-generated responses to patient questions similarly to physician-generated responses in terms of comprehensiveness, readability, and overall preference. However, rheumatologists rated AI responses significantly poorer than physician-generated responses, suggesting that LLM chatbot responses are inferior to physician responses, a difference that patients may not be aware of.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
医生与人工智能:患者和医生对风湿病患者问题的大型语言模型反应的评估,一项横断面研究。
目的:评估LLM聊天机器人与医生对患者产生的风湿病问题的反应的质量。方法:我们对加拿大埃德蒙顿的风湿病患者(n=17)进行了一项单中心横断面调查。患者评估LLM聊天机器人与医生生成的反应的全面性和可读性,四名风湿病学家也使用1-10的Likert量表评估准确性(1分为差,10分为优)。结果:患者对人工智能与医生产生的反应在全面性(7.12±0.99 vs.7.52±1.16,p=0.1962)和可读性(7.90±0.90 vs..780±0.75,p=0.5905)方面没有显著差异。风湿病学家对人工智能的反应在综合性方面明显差于医生的反应(AI 5.52±2.13 vs.医生8.76±1.07,P结论:风湿病患者对患者问题的AI反应在全面性、可读性和整体偏好方面与医生产生的反应相似。然而,风湿病学家对AI反应的评分明显低于医生产生的回应,这表明LLM聊天机器人的反应不如医生患者可能没有意识到的反应。这篇文章受版权保护。保留所有权利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Arthritis & Rheumatology
Arthritis & Rheumatology RHEUMATOLOGY-
CiteScore
20.90
自引率
3.00%
发文量
371
期刊介绍: Arthritis & Rheumatology is the official journal of the American College of Rheumatology and focuses on the natural history, pathophysiology, treatment, and outcome of rheumatic diseases. It is a peer-reviewed publication that aims to provide the highest quality basic and clinical research in this field. The journal covers a wide range of investigative areas and also includes review articles, editorials, and educational material for researchers and clinicians. Being recognized as a leading research journal in rheumatology, Arthritis & Rheumatology serves the global community of rheumatology investigators and clinicians.
期刊最新文献
Living with Sjögren's Disease: Prospects for Disease-Modifying Therapies. Safety and Efficacy of Ianalumab in Patients With Sjögren's Disease: 52-Week Results From a Randomized, Placebo-Controlled, Phase 2b Dose-Ranging Study. J. Claude Bennett, MD, 1933–2024 Winner of the 2024 American College of Rheumatology Annual Image Competition. Expert Perspective: Diagnostic Approach to Differentiating Juvenile Dermatomyositis from Muscular Dystrophy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1