Tanner Wright, Yalong Wang, Sabrina A Stratton, Manu Sebastian, Bin Liu, David G Johnson, Mark T Bedford
{"title":"Loss of the methylarginine reader function of SND1 confers resistance to hepatocellular carcinoma.","authors":"Tanner Wright, Yalong Wang, Sabrina A Stratton, Manu Sebastian, Bin Liu, David G Johnson, Mark T Bedford","doi":"10.1042/BCJ20230384","DOIUrl":null,"url":null,"abstract":"<p><p>Staphylococcal nuclease Tudor domain containing 1 (SND1) protein is an oncogene that 'reads' methylarginine marks through its Tudor domain. Specifically, it recognizes methylation marks deposited by protein arginine methyltransferase 5 (PRMT5), which is also known to promote tumorigenesis. Although SND1 can drive hepatocellular carcinoma (HCC), it is unclear whether the SND1 Tudor domain is needed to promote HCC. We sought to identify the biological role of the SND1 Tudor domain in normal and tumorigenic settings by developing two genetically engineered SND1 mouse models, an Snd1 knockout (Snd1 KO) and an Snd1 Tudor domain-mutated (Snd1 KI) mouse, whose mutant SND1 can no longer recognize PRMT5-catalyzed methylarginine marks. Quantitative PCR analysis of normal, KO, and KI liver samples revealed a role for the SND1 Tudor domain in regulating the expression of genes encoding major acute phase proteins, which could provide mechanistic insight into SND1 function in a tumor setting. Prior studies indicated that ectopic overexpression of SND1 in the mouse liver dramatically accelerates the development of diethylnitrosamine (DEN)-induced HCC. Thus, we tested the combined effects of DEN and SND1 loss or mutation on the development of HCC. We found that both Snd1 KO and Snd1 KI mice were partially protected against malignant tumor development following exposure to DEN. These results support the development of small molecule inhibitors that target the SND1 Tudor domain or the use of upstream PRMT5 inhibitors, as novel treatments for HCC.</p>","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":" ","pages":"1805-1816"},"PeriodicalIF":4.4000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10860161/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BCJ20230384","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Staphylococcal nuclease Tudor domain containing 1 (SND1) protein is an oncogene that 'reads' methylarginine marks through its Tudor domain. Specifically, it recognizes methylation marks deposited by protein arginine methyltransferase 5 (PRMT5), which is also known to promote tumorigenesis. Although SND1 can drive hepatocellular carcinoma (HCC), it is unclear whether the SND1 Tudor domain is needed to promote HCC. We sought to identify the biological role of the SND1 Tudor domain in normal and tumorigenic settings by developing two genetically engineered SND1 mouse models, an Snd1 knockout (Snd1 KO) and an Snd1 Tudor domain-mutated (Snd1 KI) mouse, whose mutant SND1 can no longer recognize PRMT5-catalyzed methylarginine marks. Quantitative PCR analysis of normal, KO, and KI liver samples revealed a role for the SND1 Tudor domain in regulating the expression of genes encoding major acute phase proteins, which could provide mechanistic insight into SND1 function in a tumor setting. Prior studies indicated that ectopic overexpression of SND1 in the mouse liver dramatically accelerates the development of diethylnitrosamine (DEN)-induced HCC. Thus, we tested the combined effects of DEN and SND1 loss or mutation on the development of HCC. We found that both Snd1 KO and Snd1 KI mice were partially protected against malignant tumor development following exposure to DEN. These results support the development of small molecule inhibitors that target the SND1 Tudor domain or the use of upstream PRMT5 inhibitors, as novel treatments for HCC.
期刊介绍:
Exploring the molecular mechanisms that underpin key biological processes, the Biochemical Journal is a leading bioscience journal publishing high-impact scientific research papers and reviews on the latest advances and new mechanistic concepts in the fields of biochemistry, cellular biosciences and molecular biology.
The Journal and its Editorial Board are committed to publishing work that provides a significant advance to current understanding or mechanistic insights; studies that go beyond observational work using in vitro and/or in vivo approaches are welcomed.
Painless publishing:
All papers undergo a rigorous peer review process; however, the Editorial Board is committed to ensuring that, if revisions are recommended, extra experiments not necessary to the paper will not be asked for.
Areas covered in the journal include:
Cell biology
Chemical biology
Energy processes
Gene expression and regulation
Mechanisms of disease
Metabolism
Molecular structure and function
Plant biology
Signalling