Transcrocetin Meglumine Salt Inhibits Spinal Glial Cell-Mediated Proinflammatory Cytokines and Attenuates Complete Freund's Adjuvant-Induced Inflammatory Pain.

IF 2.2 4区 医学 Q3 ENDOCRINOLOGY & METABOLISM Neuroimmunomodulation Pub Date : 2023-01-01 Epub Date: 2023-10-27 DOI:10.1159/000534607
Qing Qiao, Dandan Yao, Yongjie Wang, Shuxia Zhang, Gang Chen
{"title":"Transcrocetin Meglumine Salt Inhibits Spinal Glial Cell-Mediated Proinflammatory Cytokines and Attenuates Complete Freund's Adjuvant-Induced Inflammatory Pain.","authors":"Qing Qiao, Dandan Yao, Yongjie Wang, Shuxia Zhang, Gang Chen","doi":"10.1159/000534607","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Inflammatory pain is a significant global clinical challenge that involves both unpleasant sensory and emotional experiences. The treatment of pain is imminent, and we are committed to seeking new analgesics for pain relief. Transcrocetin meglumine salt (TCMS), a saffron metabolite derived from the crocin apocarotenoids, has exhibited the ability to cross the blood-brain barrier and exert neuroprotective effects. In this study, we aimed to investigate whether TCMS could ameliorate complete Freund's adjuvant (CFA)-induced inflammatory pain in mice and elucidate its underlying mechanisms.</p><p><strong>Methods: </strong>Here, we established an inflammatory pain model in mice by injecting CFA into the left hind paw. Three days later, we administered intraperitoneal injections of TCMS (10 mg/kg) or saline to the animals. We examined mechanical allodynia, thermal hypersensitivity, and anxiety behavior. Furthermore, the activation of glial cells and proinflammatory cytokines in the spinal cord were detected.</p><p><strong>Results: </strong>Our results showed that TCMS significantly reversed the mechanical allodynia and thermal hypersensitivity in the CFA-injected mice. Furthermore, TCMS administration effectively inhibited the activation of microglia and astrocytes in the spinal cord induced by CFA. Additionally, TCMS suppressed the production and release of spinal proinflammatory cytokines, including TNF-α, IL-1β, and IL-6, in CFA-injected mice.</p><p><strong>Conclusion: </strong>Taken together, our findings demonstrate that TCMS holds promise as an innovative analgesic due to its ability to ameliorate inflammatory reactions.</p>","PeriodicalId":19133,"journal":{"name":"Neuroimmunomodulation","volume":" ","pages":"315-324"},"PeriodicalIF":2.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10659006/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroimmunomodulation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000534607","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Inflammatory pain is a significant global clinical challenge that involves both unpleasant sensory and emotional experiences. The treatment of pain is imminent, and we are committed to seeking new analgesics for pain relief. Transcrocetin meglumine salt (TCMS), a saffron metabolite derived from the crocin apocarotenoids, has exhibited the ability to cross the blood-brain barrier and exert neuroprotective effects. In this study, we aimed to investigate whether TCMS could ameliorate complete Freund's adjuvant (CFA)-induced inflammatory pain in mice and elucidate its underlying mechanisms.

Methods: Here, we established an inflammatory pain model in mice by injecting CFA into the left hind paw. Three days later, we administered intraperitoneal injections of TCMS (10 mg/kg) or saline to the animals. We examined mechanical allodynia, thermal hypersensitivity, and anxiety behavior. Furthermore, the activation of glial cells and proinflammatory cytokines in the spinal cord were detected.

Results: Our results showed that TCMS significantly reversed the mechanical allodynia and thermal hypersensitivity in the CFA-injected mice. Furthermore, TCMS administration effectively inhibited the activation of microglia and astrocytes in the spinal cord induced by CFA. Additionally, TCMS suppressed the production and release of spinal proinflammatory cytokines, including TNF-α, IL-1β, and IL-6, in CFA-injected mice.

Conclusion: Taken together, our findings demonstrate that TCMS holds promise as an innovative analgesic due to its ability to ameliorate inflammatory reactions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transrocetin葡糖胺盐抑制脊髓胶质细胞介导的促炎细胞因子,并减轻完全弗氏佐剂诱导的炎症疼痛。
引言:炎症性疼痛是一项重大的全球性临床挑战,涉及不愉快的感官和情感体验。疼痛的治疗迫在眉睫,我们致力于寻找新的止痛药来缓解疼痛。番红花素葡糖胺盐(TCMS)是一种源自番红花素类胡萝卜素的藏红花代谢产物,具有跨越血脑屏障和发挥神经保护作用的能力。在本研究中,我们旨在研究TCMS是否可以改善完全弗氏佐剂(CFA)诱导的小鼠炎症疼痛,并阐明其潜在机制。方法:通过左后爪注射CFA建立小鼠炎症性疼痛模型。三天后,我们给动物腹腔注射TCMS(10mg/kg)或生理盐水。我们检查了机械性异常性疼痛、热过敏和焦虑行为。此外,还检测了脊髓中神经胶质细胞和促炎细胞因子的激活。结果:我们的研究结果表明,TCMS显著逆转了CFA注射小鼠的机械性异常性疼痛和热超敏反应。此外,TCMS给药有效抑制了CFA诱导的脊髓小胶质细胞和星形胶质细胞的活化。此外,TCMS抑制CFA注射小鼠脊髓促炎细胞因子的产生和释放,包括TNF-α、IL-1β和IL-6。结论:总之,我们的研究结果表明,TCMS具有改善炎症反应的能力,有望成为一种创新的镇痛药。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuroimmunomodulation
Neuroimmunomodulation 医学-免疫学
CiteScore
3.60
自引率
4.20%
发文量
35
审稿时长
>12 weeks
期刊介绍: The rapidly expanding area of research known as neuroimmunomodulation explores the way in which the nervous system interacts with the immune system via neural, hormonal, and paracrine actions. Encompassing both basic and clinical research, ''Neuroimmunomodulation'' reports on all aspects of these interactions. Basic investigations consider all neural and humoral networks from molecular genetics through cell regulation to integrative systems of the body. The journal also aims to clarify the basic mechanisms involved in the pathogenesis of the CNS pathology in AIDS patients and in various neurodegenerative diseases. Although primarily devoted to research articles, timely reviews are published on a regular basis.
期刊最新文献
The perinatal microbiota-gut-brain axis: Implications for postpartum depression. The sex-specific effects of early life adversity and chronic psychosocial stress during adulthood on bone are mitigated by Mycobacterium vaccae NCTC 11659 in mice. The saNeuroGut Initiative: Investigating the Gut Microbiome and Symptoms of Anxiety, Depression, and Posttraumatic Stress. Immunological Approaches in the Diagnosis and Treatment of Psychiatric Disorders: A Historical Overview. A Brief Historic Review of Research on Early Life Stress and Inflammation across the Lifespan.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1