Gaussian Adapted Markov Model with Overhauled Fluctuation Analysis-Based Big Data Streaming Model in Cloud.

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Big Data Pub Date : 2024-02-01 Epub Date: 2023-10-30 DOI:10.1089/big.2023.0035
M Ananthi, Annapoorani Gopal, K Ramalakshmi, P Mohan Kumar
{"title":"Gaussian Adapted Markov Model with Overhauled Fluctuation Analysis-Based Big Data Streaming Model in Cloud.","authors":"M Ananthi, Annapoorani Gopal, K Ramalakshmi, P Mohan Kumar","doi":"10.1089/big.2023.0035","DOIUrl":null,"url":null,"abstract":"<p><p>An accurate resource usage prediction in the big data streaming applications still remains as one of the complex processes. In the existing works, various resource scaling techniques are developed for forecasting the resource usage in the big data streaming systems. However, the baseline streaming mechanisms limit with the issues of inefficient resource scaling, inaccurate forecasting, high latency, and running time. Therefore, the proposed work motivates to develop a new framework, named as Gaussian adapted Markov model (GAMM)-overhauled fluctuation analysis (OFA), for an efficient big data streaming in the cloud systems. The purpose of this work is to efficiently manage the time-bounded big data streaming applications with reduced error rate. In this study, the gating strategy is also used to extract the set of features for obtaining nonlinear distribution of data and fat convergence solution, used to perform the fluctuation analysis. Moreover, the layered architecture is developed for simplifying the process of resource forecasting in the streaming applications. During experimentation, the results of the proposed stream model GAMM-OFA are validated and compared by using different measures.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":" ","pages":"1-18"},"PeriodicalIF":2.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/big.2023.0035","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

An accurate resource usage prediction in the big data streaming applications still remains as one of the complex processes. In the existing works, various resource scaling techniques are developed for forecasting the resource usage in the big data streaming systems. However, the baseline streaming mechanisms limit with the issues of inefficient resource scaling, inaccurate forecasting, high latency, and running time. Therefore, the proposed work motivates to develop a new framework, named as Gaussian adapted Markov model (GAMM)-overhauled fluctuation analysis (OFA), for an efficient big data streaming in the cloud systems. The purpose of this work is to efficiently manage the time-bounded big data streaming applications with reduced error rate. In this study, the gating strategy is also used to extract the set of features for obtaining nonlinear distribution of data and fat convergence solution, used to perform the fluctuation analysis. Moreover, the layered architecture is developed for simplifying the process of resource forecasting in the streaming applications. During experimentation, the results of the proposed stream model GAMM-OFA are validated and compared by using different measures.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于高斯自适应马尔可夫模型和检修波动分析的云中大数据流模型。
在大数据流应用中,准确的资源使用预测仍然是一个复杂的过程。在现有的工作中,开发了各种资源缩放技术来预测大数据流系统中的资源使用情况。然而,基线流机制由于资源扩展效率低、预测不准确、高延迟和运行时间等问题而受到限制。因此,所提出的工作旨在开发一种新的框架,称为高斯自适应马尔可夫模型(GAMM)-大修波动分析(OFA),用于云系统中高效的大数据流。这项工作的目的是有效地管理有时间限制的大数据流应用程序,降低错误率。在本研究中,门控策略还用于提取一组特征,以获得数据的非线性分布和脂肪收敛解,用于进行波动分析。此外,为了简化流应用程序中的资源预测过程,开发了分层体系结构。在实验过程中,通过使用不同的措施对所提出的流模型GAMM-OFA的结果进行了验证和比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Big Data
Big Data COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
9.10
自引率
2.20%
发文量
60
期刊介绍: Big Data is the leading peer-reviewed journal covering the challenges and opportunities in collecting, analyzing, and disseminating vast amounts of data. The Journal addresses questions surrounding this powerful and growing field of data science and facilitates the efforts of researchers, business managers, analysts, developers, data scientists, physicists, statisticians, infrastructure developers, academics, and policymakers to improve operations, profitability, and communications within their businesses and institutions. Spanning a broad array of disciplines focusing on novel big data technologies, policies, and innovations, the Journal brings together the community to address current challenges and enforce effective efforts to organize, store, disseminate, protect, manipulate, and, most importantly, find the most effective strategies to make this incredible amount of information work to benefit society, industry, academia, and government. Big Data coverage includes: Big data industry standards, New technologies being developed specifically for big data, Data acquisition, cleaning, distribution, and best practices, Data protection, privacy, and policy, Business interests from research to product, The changing role of business intelligence, Visualization and design principles of big data infrastructures, Physical interfaces and robotics, Social networking advantages for Facebook, Twitter, Amazon, Google, etc, Opportunities around big data and how companies can harness it to their advantage.
期刊最新文献
DMHANT: DropMessage Hypergraph Attention Network for Information Propagation Prediction. Maximizing Influence in Social Networks Using Combined Local Features and Deep Learning-Based Node Embedding. A Weighted GraphSAGE-Based Context-Aware Approach for Big Data Access Control. Attribute-Based Adaptive Homomorphic Encryption for Big Data Security. Hybrid Deep Learning Approach for Traffic Speed Prediction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1