{"title":"Upconversion luminescence and optical thermometry behaviors of Yb<sup>3+</sup> and Ho<sup>3+</sup> co-doped GYTO crystal.","authors":"Chuancheng Zhang, Shoujun Ding, Miaomiao Wang, Hao Ren, Xubing Tang, Yong Zou, Renqin Dou, Wenpeng Liu","doi":"10.1007/s12200-023-00083-2","DOIUrl":null,"url":null,"abstract":"<p><p>Optical thermometry based on the upconversion (UC) luminescence intensity ratio (LIR) has attracted considerable attention because of its feasibility for achievement of accurate non-contact temperature measurement. Compared with traditional UC phosphors, optical thermometry based on UC single crystals can achieve faster response and higher sensitivity due to the stability and high thermal conductivity of the single crystals. In this study, a high-quality 5 at% Yb<sup>3+</sup> and 1 at% Ho<sup>3+</sup> co-doped Gd<sub>0.74</sub>Y<sub>0.2</sub>TaO<sub>4</sub> single crystal was grown by the Czochralski (Cz) method, and the structure of the as-grown crystal was characterized. Importantly, the UC luminescent properties and optical thermometry behaviors of this crystal were revealed. Under 980 nm wavelength excitation, green and red UC luminescence lines at 550 and 650 nm and corresponding to the <sup>5</sup>F<sub>4</sub>/<sup>5</sup>S<sub>2</sub> → <sup>5</sup>I<sub>8</sub> and <sup>5</sup>F<sub>5</sub> → <sup>5</sup>I<sub>8</sub> transitions of Ho<sup>3+</sup>, respectively, were observed. The green and red UC emissions involved a two-photon mechanism, as evidenced by the analysis of power-dependent UC emission spectra. The temperature-dependent UC emission spectra were measured in the temperature range of 330-660 K to assess the optical temperature sensing behavior. At 660 K, the maximum relative sensing sensitivity (S<sub>r</sub>) was determined to be 0.0037 K<sup>-1</sup>. These results highlight the significant potential of Yb,Ho:GYTO single crystal for optical temperature sensors.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"16 1","pages":"31"},"PeriodicalIF":4.1000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10618148/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Optoelectronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12200-023-00083-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Optical thermometry based on the upconversion (UC) luminescence intensity ratio (LIR) has attracted considerable attention because of its feasibility for achievement of accurate non-contact temperature measurement. Compared with traditional UC phosphors, optical thermometry based on UC single crystals can achieve faster response and higher sensitivity due to the stability and high thermal conductivity of the single crystals. In this study, a high-quality 5 at% Yb3+ and 1 at% Ho3+ co-doped Gd0.74Y0.2TaO4 single crystal was grown by the Czochralski (Cz) method, and the structure of the as-grown crystal was characterized. Importantly, the UC luminescent properties and optical thermometry behaviors of this crystal were revealed. Under 980 nm wavelength excitation, green and red UC luminescence lines at 550 and 650 nm and corresponding to the 5F4/5S2 → 5I8 and 5F5 → 5I8 transitions of Ho3+, respectively, were observed. The green and red UC emissions involved a two-photon mechanism, as evidenced by the analysis of power-dependent UC emission spectra. The temperature-dependent UC emission spectra were measured in the temperature range of 330-660 K to assess the optical temperature sensing behavior. At 660 K, the maximum relative sensing sensitivity (Sr) was determined to be 0.0037 K-1. These results highlight the significant potential of Yb,Ho:GYTO single crystal for optical temperature sensors.
期刊介绍:
Frontiers of Optoelectronics seeks to provide a multidisciplinary forum for a broad mix of peer-reviewed academic papers in order to promote rapid communication and exchange between researchers in China and abroad. It introduces and reflects significant achievements being made in the field of photonics or optoelectronics. The topics include, but are not limited to, semiconductor optoelectronics, nano-photonics, information photonics, energy photonics, ultrafast photonics, biomedical photonics, nonlinear photonics, fiber optics, laser and terahertz technology and intelligent photonics. The journal publishes reviews, research articles, letters, comments, special issues and so on.
Frontiers of Optoelectronics especially encourages papers from new emerging and multidisciplinary areas, papers reflecting the international trends of research and development, and on special topics reporting progress made in the field of optoelectronics. All published papers will reflect the original thoughts of researchers and practitioners on basic theories, design and new technology in optoelectronics.
Frontiers of Optoelectronics is strictly peer-reviewed and only accepts original submissions in English. It is a fully OA journal and the APCs are covered by Higher Education Press and Huazhong University of Science and Technology.
● Presents the latest developments in optoelectronics and optics
● Emphasizes the latest developments of new optoelectronic materials, devices, systems and applications
● Covers industrial photonics, information photonics, biomedical photonics, energy photonics, laser and terahertz technology, and more