{"title":"The influence of sampling method and season on modeling of selenium into coldwater fish and implications on tissue-based water quality benchmarks.","authors":"Maíra Peixoto Mendes, Beatriz Cupe-Flores, Katherine Woolhouse, Stacey Fernandes, Karsten Liber","doi":"10.1002/ieam.4859","DOIUrl":null,"url":null,"abstract":"<p><p>Selenium (Se) contamination of aquatic ecosystems has led to the local extirpation of some Se-sensitive fish species. Although Se exposure occurs primarily via diet, considerable uncertainty lies in modeling Se transfer and bioaccumulation from sediment, detritus, and/or periphyton through benthic macroinvertebrates (BMI) to fish. Here we estimated Se concentrations in four coldwater fish species (northern pike, white sucker, lake whitefish, and ninespine stickleback) inhabiting boreal lakes downstream from a uranium mill in northern Canada. In addition, we evaluated the potential effects of BMI and periphyton sampling methods (artificial substrates vs. grab samples), seasons (summer vs. winter), and models (USEPA vs. Assessment of the Dispersion and Effects of Parameter Transport) on the estimated Se concentrations in fish tissue. Results were compared with site-specific benchmarks and observed Se concentrations in resident fish. In summer 2019, periphyton and BMI were sampled at 10 sampling stations (two in Vulture Lake and eight in McClean Lake) using artificial substrates (n = 4) and sediment grab samples (n = 3). In winter 2021, samples were collected in McClean Lake (n = 3) through ice holes using a sediment grab sampler. Estimated Se concentrations in fish tissue depended on the surface sediment or periphyton Se concentrations used in the models. At Vulture Lake, Se concentrations in northern pike muscle estimated using the grab sample data (17.3 ± 11.5 µg/g DW), but not the artificial substrates (34.5 ± 1.2 µg/g DW), were comparable with the observed mean concentration (19.0 ± 1.4 µg/g DW) in this species. At McClean Lake, Se body burdens in forage fish estimated using data from both sampling methods were comparable with measured data. Significantly lower mean whole-body Se concentrations were estimated for all fish species in winter (1.0 ± 0.3 µg/g DW) relative to summer (4.8 ± 1.6 µg/g DW). Further investigation is necessary to understand how potential seasonal shifts in dietary Se exposure relate to fish reproduction and early life stages.</p>","PeriodicalId":13557,"journal":{"name":"Integrated Environmental Assessment and Management","volume":" ","pages":"39-51"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Environmental Assessment and Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/ieam.4859","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Selenium (Se) contamination of aquatic ecosystems has led to the local extirpation of some Se-sensitive fish species. Although Se exposure occurs primarily via diet, considerable uncertainty lies in modeling Se transfer and bioaccumulation from sediment, detritus, and/or periphyton through benthic macroinvertebrates (BMI) to fish. Here we estimated Se concentrations in four coldwater fish species (northern pike, white sucker, lake whitefish, and ninespine stickleback) inhabiting boreal lakes downstream from a uranium mill in northern Canada. In addition, we evaluated the potential effects of BMI and periphyton sampling methods (artificial substrates vs. grab samples), seasons (summer vs. winter), and models (USEPA vs. Assessment of the Dispersion and Effects of Parameter Transport) on the estimated Se concentrations in fish tissue. Results were compared with site-specific benchmarks and observed Se concentrations in resident fish. In summer 2019, periphyton and BMI were sampled at 10 sampling stations (two in Vulture Lake and eight in McClean Lake) using artificial substrates (n = 4) and sediment grab samples (n = 3). In winter 2021, samples were collected in McClean Lake (n = 3) through ice holes using a sediment grab sampler. Estimated Se concentrations in fish tissue depended on the surface sediment or periphyton Se concentrations used in the models. At Vulture Lake, Se concentrations in northern pike muscle estimated using the grab sample data (17.3 ± 11.5 µg/g DW), but not the artificial substrates (34.5 ± 1.2 µg/g DW), were comparable with the observed mean concentration (19.0 ± 1.4 µg/g DW) in this species. At McClean Lake, Se body burdens in forage fish estimated using data from both sampling methods were comparable with measured data. Significantly lower mean whole-body Se concentrations were estimated for all fish species in winter (1.0 ± 0.3 µg/g DW) relative to summer (4.8 ± 1.6 µg/g DW). Further investigation is necessary to understand how potential seasonal shifts in dietary Se exposure relate to fish reproduction and early life stages.
期刊介绍:
Integrated Environmental Assessment and Management (IEAM) publishes the science underpinning environmental decision making and problem solving. Papers submitted to IEAM must link science and technical innovations to vexing regional or global environmental issues in one or more of the following core areas:
Science-informed regulation, policy, and decision making
Health and ecological risk and impact assessment
Restoration and management of damaged ecosystems
Sustaining ecosystems
Managing large-scale environmental change
Papers published in these broad fields of study are connected by an array of interdisciplinary engineering, management, and scientific themes, which collectively reflect the interconnectedness of the scientific, social, and environmental challenges facing our modern global society:
Methods for environmental quality assessment; forecasting across a number of ecosystem uses and challenges (systems-based, cost-benefit, ecosystem services, etc.); measuring or predicting ecosystem change and adaptation
Approaches that connect policy and management tools; harmonize national and international environmental regulation; merge human well-being with ecological management; develop and sustain the function of ecosystems; conceptualize, model and apply concepts of spatial and regional sustainability
Assessment and management frameworks that incorporate conservation, life cycle, restoration, and sustainability; considerations for climate-induced adaptation, change and consequences, and vulnerability
Environmental management applications using risk-based approaches; considerations for protecting and fostering biodiversity, as well as enhancement or protection of ecosystem services and resiliency.