Long non-coding RNA FKSG29 regulates oxidative stress and endothelial dysfunction in obstructive sleep apnea.

IF 3.5 2区 生物学 Q3 CELL BIOLOGY Molecular and Cellular Biochemistry Pub Date : 2024-10-01 Epub Date: 2023-11-02 DOI:10.1007/s11010-023-04880-3
Yung-Che Chen, Po-Yuan Hsu, Mao-Chang Su, Yung-Lung Chen, Ya-Ting Chang, Chien-Hung Chin, I-Chun Lin, Yu-Mu Chen, Ting-Ya Wang, Yong-Yong Lin, Chiu-Ping Lee, Meng-Chih Lin, Chang-Chun Hsiao
{"title":"Long non-coding RNA FKSG29 regulates oxidative stress and endothelial dysfunction in obstructive sleep apnea.","authors":"Yung-Che Chen, Po-Yuan Hsu, Mao-Chang Su, Yung-Lung Chen, Ya-Ting Chang, Chien-Hung Chin, I-Chun Lin, Yu-Mu Chen, Ting-Ya Wang, Yong-Yong Lin, Chiu-Ping Lee, Meng-Chih Lin, Chang-Chun Hsiao","doi":"10.1007/s11010-023-04880-3","DOIUrl":null,"url":null,"abstract":"<p><p>Altered expressions of pro-/anti-oxidant genes are known to regulate the pathophysiology of obstructive sleep apnea (OSA).We aim to explore the role of a novel long non-coding (lnc) RNA FKSG29 in the development of intermittent hypoxia with re-oxygenation (IHR)-induced endothelial dysfunction in OSA. Gene expression levels of key pro-/anti-oxidant genes, vasoactive genes, and the FKSG29 were measured in peripheral blood mononuclear cells from 12 subjects with primary snoring (PS) and 36 OSA patients. Human monocytic THP-1 cells and human umbilical vein endothelial cells (HUVEC) were used for gene knockout and double luciferase under IHR exposure. Gene expression levels of the FKSG29 lncRNA, NOX2, NOX5, and VEGFA genes were increased in OSA patients versus PS subjects, while SOD2 and VEGFB gene expressions were decreased. Subgroup analysis showed that gene expression of the miR-23a-3p, an endogenous competitive microRNA of the FKSG29, was decreased in sleep-disordered breathing patients with hypertension versus those without hypertension. In vitro IHR experiments showed that knock-down of the FKSG29 reversed IHR-induced ROS overt production, early apoptosis, up-regulations of the HIF1A/HIF2A/NOX2/NOX4/NOX5/VEGFA/VEGFB genes, and down-regulations of the VEGFB/SOD2 genes, while the protective effects of FKSG29 knock-down were abolished by miR-23a-3p knock-down. Dual-luciferase reporter assays confirmed that FKSG29 was a sponge of miR-23a-3p, which regulated IL6R directly. Immunofluorescence stain further demonstrated that FKSGH29 knock-down decreased IHR-induced uptake of oxidized low density lipoprotein and reversed IHR-induced IL6R/STAT3/GATA6/ICAM1/VCAM1 up-regulations. The findings indicate that the combined RNA interference may be a novel therapy for OSA-related endothelial dysfunction via regulating pro-/anti-oxidant imbalance or targeting miR-23a-IL6R-ICAM1/VCAM1 signaling.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"2723-2740"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-023-04880-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Altered expressions of pro-/anti-oxidant genes are known to regulate the pathophysiology of obstructive sleep apnea (OSA).We aim to explore the role of a novel long non-coding (lnc) RNA FKSG29 in the development of intermittent hypoxia with re-oxygenation (IHR)-induced endothelial dysfunction in OSA. Gene expression levels of key pro-/anti-oxidant genes, vasoactive genes, and the FKSG29 were measured in peripheral blood mononuclear cells from 12 subjects with primary snoring (PS) and 36 OSA patients. Human monocytic THP-1 cells and human umbilical vein endothelial cells (HUVEC) were used for gene knockout and double luciferase under IHR exposure. Gene expression levels of the FKSG29 lncRNA, NOX2, NOX5, and VEGFA genes were increased in OSA patients versus PS subjects, while SOD2 and VEGFB gene expressions were decreased. Subgroup analysis showed that gene expression of the miR-23a-3p, an endogenous competitive microRNA of the FKSG29, was decreased in sleep-disordered breathing patients with hypertension versus those without hypertension. In vitro IHR experiments showed that knock-down of the FKSG29 reversed IHR-induced ROS overt production, early apoptosis, up-regulations of the HIF1A/HIF2A/NOX2/NOX4/NOX5/VEGFA/VEGFB genes, and down-regulations of the VEGFB/SOD2 genes, while the protective effects of FKSG29 knock-down were abolished by miR-23a-3p knock-down. Dual-luciferase reporter assays confirmed that FKSG29 was a sponge of miR-23a-3p, which regulated IL6R directly. Immunofluorescence stain further demonstrated that FKSGH29 knock-down decreased IHR-induced uptake of oxidized low density lipoprotein and reversed IHR-induced IL6R/STAT3/GATA6/ICAM1/VCAM1 up-regulations. The findings indicate that the combined RNA interference may be a novel therapy for OSA-related endothelial dysfunction via regulating pro-/anti-oxidant imbalance or targeting miR-23a-IL6R-ICAM1/VCAM1 signaling.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
长非编码RNA FKSG29调节阻塞性睡眠呼吸暂停患者的氧化应激和内皮功能障碍。
已知促/抗氧化基因表达的改变可调节阻塞性睡眠呼吸暂停(OSA)的病理生理学。我们旨在探索一种新型长非编码(lnc)RNA FKSG29在OSA间歇性缺氧再氧合(IHR)诱导的内皮功能障碍中的作用。在12名原发性打鼾(PS)受试者和36名OSA患者的外周血单核细胞中测量了关键的促/抗氧化基因、血管活性基因和FKSG29的基因表达水平。人单核细胞THP-1细胞和人脐静脉内皮细胞(HUVEC)在IHR暴露下用于基因敲除和双荧光素酶。与PS受试者相比,OSA患者的FKSG29 lncRNA、NOX2、NOX5和VEGFA基因表达水平增加,而SOD2和VEGFB基因表达降低。亚组分析显示,与非高血压患者相比,患有高血压的睡眠呼吸障碍患者的miR-23a-3p(FKSG29的内源性竞争性微小RNA)的基因表达降低。体外IHR实验表明,FKSG29的敲除逆转了IHR诱导的ROS的显性产生、早期凋亡、HIF1A/HIF2A/NOX4/NO5/VEGFA/VEGFB基因的上调和VEGFB/SOD2基因的下调,而FKSG29敲除的保护作用被miR-23a-3p敲除所消除。双荧光素酶报告基因分析证实FKSG29是miR-23a-3p的海绵,其直接调节IL6R。免疫荧光染色进一步证明FKSGH29敲低降低了IHR诱导的氧化低密度脂蛋白的摄取,并逆转了IHR诱发的IL6R/STAT3/GATA6/ICAM1/VCAM1的上调。研究结果表明,联合RNA干扰可能是通过调节促/抗氧化失衡或靶向miR-23a-IL6R-ICAM1/VCAM1信号传导来治疗OSA相关内皮功能障碍的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular and Cellular Biochemistry
Molecular and Cellular Biochemistry 生物-细胞生物学
CiteScore
8.30
自引率
2.30%
发文量
293
审稿时长
1.7 months
期刊介绍: Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell. In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.
期刊最新文献
Retraction Note: MiR-146a negatively regulates neutrophil elastase-induced MUC5AC secretion from 16HBE human bronchial epithelial cells. Retraction Note: Topical application of aminopeptidase N-neutralizing antibody accelerates wound closure. Correction to: Mitochondrial complex-1 as a therapeutic target for cardiac diseases. RETRACTED ARTICLE: Upregulation of MCL-1 by LUCAT1 through interacting with SRSF1 promotes the migration and invasion in non-small cell lung carcinoma. Functional activity and morphology of isolated rat cardiac mitochondria under calcium overload. Effect of naringin.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1