Yuanguang Liu, Ran Cheng, Yijie Wu, Chunmei Liu, Yang Liu, Qing Chang, Jun Yin
{"title":"Tumor-Promoting Effects of Microrna-421/4-Aminobutyrate Aminotransferase Axis in Hepatocellular Carcinoma.","authors":"Yuanguang Liu, Ran Cheng, Yijie Wu, Chunmei Liu, Yang Liu, Qing Chang, Jun Yin","doi":"10.24875/RIC.23000073","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>MicroRNA-421 (miR-421) has been implicated in hepatocellular carcinoma (HCC), but its potential mechanism in HCC remains unclear.</p><p><strong>Objectives: </strong>The study aimed to study the potential mechanism of miR-421 in HCC which is necessary.</p><p><strong>Methods: </strong>The downstream target genes of miR-421 were screened in HCC tissues and cells using miDIP, Targetscan, and starBase databases. Differential analysis, survival analysis, and Pearson correlation analysis were performed between miR-421 and its downstream target genes. Quantitative reverse transcription polymerase chain reaction and western blot were used to assay RNA and protein levels of 4-aminobutyrate aminotransferase (ABAT) and epithelial-mesenchymal transition (EMT)-related proteins. Cell-based assays, including CCK-8, wound healing, transwell, flow cytometry, and metabolic measurements, were implemented to assess proliferation, migration, invasion, cell cycle, and apoptosis of HCC cells with different treatments. Dual-luciferase assay was utilized to detect the targeting relationship between miR-421 and ABAT.</p><p><strong>Results: </strong>miR-421 level was elevated in HCC tissues and cells, and low miR-421 expression hindered phenotype progression of HCC cells. ABAT was identified as a direct target of miR-421 in HCC cells, and miR-421 could inhibit ABAT expression. Rescue assay revealed that miR-421 promoted HCC cell tumorigenesis progress and affected cell metabolic remodeling through down-regulating ABAT.</p><p><strong>Conclusion: </strong>The miR-421/ABAT regulatory axis promoted HCC cell tumorigenesis progress, highlighting its potential as a therapeutic target for HCC.</p>","PeriodicalId":49612,"journal":{"name":"Revista De Investigacion Clinica-Clinical and Translational Investigation","volume":"75 5","pages":"233-248"},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista De Investigacion Clinica-Clinical and Translational Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.24875/RIC.23000073","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Background: MicroRNA-421 (miR-421) has been implicated in hepatocellular carcinoma (HCC), but its potential mechanism in HCC remains unclear.
Objectives: The study aimed to study the potential mechanism of miR-421 in HCC which is necessary.
Methods: The downstream target genes of miR-421 were screened in HCC tissues and cells using miDIP, Targetscan, and starBase databases. Differential analysis, survival analysis, and Pearson correlation analysis were performed between miR-421 and its downstream target genes. Quantitative reverse transcription polymerase chain reaction and western blot were used to assay RNA and protein levels of 4-aminobutyrate aminotransferase (ABAT) and epithelial-mesenchymal transition (EMT)-related proteins. Cell-based assays, including CCK-8, wound healing, transwell, flow cytometry, and metabolic measurements, were implemented to assess proliferation, migration, invasion, cell cycle, and apoptosis of HCC cells with different treatments. Dual-luciferase assay was utilized to detect the targeting relationship between miR-421 and ABAT.
Results: miR-421 level was elevated in HCC tissues and cells, and low miR-421 expression hindered phenotype progression of HCC cells. ABAT was identified as a direct target of miR-421 in HCC cells, and miR-421 could inhibit ABAT expression. Rescue assay revealed that miR-421 promoted HCC cell tumorigenesis progress and affected cell metabolic remodeling through down-regulating ABAT.
Conclusion: The miR-421/ABAT regulatory axis promoted HCC cell tumorigenesis progress, highlighting its potential as a therapeutic target for HCC.
期刊介绍:
The Revista de Investigación Clínica – Clinical and Translational Investigation (RIC-C&TI), publishes original clinical and biomedical research of interest to physicians in internal medicine, surgery, and any of their specialties. The Revista de Investigación Clínica – Clinical and Translational Investigation is the official journal of the National Institutes of Health of Mexico, which comprises a group of Institutes and High Specialty Hospitals belonging to the Ministery of Health. The journal is published both on-line and in printed version, appears bimonthly and publishes peer-reviewed original research articles as well as brief and in-depth reviews. All articles published are open access and can be immediately and permanently free for everyone to read and download. The journal accepts clinical and molecular research articles, short reports and reviews.
Types of manuscripts:
– Brief Communications
– Research Letters
– Original Articles
– Brief Reviews
– In-depth Reviews
– Perspectives
– Letters to the Editor