Wenjie Wang;Jie Wang;Yang Luo;Xiaohua Wang;Huajian Song
{"title":"A Survey on Force Sensing Techniques in Robot-Assisted Minimally Invasive Surgery","authors":"Wenjie Wang;Jie Wang;Yang Luo;Xiaohua Wang;Huajian Song","doi":"10.1109/TOH.2023.3329172","DOIUrl":null,"url":null,"abstract":"Minimally invasive surgery (MIS) is commonly used in some robotic-assisted surgery (RAS) systems. However, many RAS lack the strength and tactile sensation of surgical tools. Therefore, researchers have developed various force sensing techniques in robot-assisted minimally invasive surgery (RMIS). This paper provides a systematic classification and review of force sensing approaches in the field of RMIS, with a particular focus on direct and indirect force sensing. In this survey, the relevant literature on various sensing principles, haptic sensor design standards, and sensing technologies between 2000 and 2022 is reviewed. This survey can also serve as a roadmap for future developments by identifying the shortcomings of the field and discussing the emerging trends in force sensing methods.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"16 4","pages":"702-718"},"PeriodicalIF":2.4000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Haptics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10306289/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Minimally invasive surgery (MIS) is commonly used in some robotic-assisted surgery (RAS) systems. However, many RAS lack the strength and tactile sensation of surgical tools. Therefore, researchers have developed various force sensing techniques in robot-assisted minimally invasive surgery (RMIS). This paper provides a systematic classification and review of force sensing approaches in the field of RMIS, with a particular focus on direct and indirect force sensing. In this survey, the relevant literature on various sensing principles, haptic sensor design standards, and sensing technologies between 2000 and 2022 is reviewed. This survey can also serve as a roadmap for future developments by identifying the shortcomings of the field and discussing the emerging trends in force sensing methods.
期刊介绍:
IEEE Transactions on Haptics (ToH) is a scholarly archival journal that addresses the science, technology, and applications associated with information acquisition and object manipulation through touch. Haptic interactions relevant to this journal include all aspects of manual exploration and manipulation of objects by humans, machines and interactions between the two, performed in real, virtual, teleoperated or networked environments. Research areas of relevance to this publication include, but are not limited to, the following topics: Human haptic and multi-sensory perception and action, Aspects of motor control that explicitly pertain to human haptics, Haptic interactions via passive or active tools and machines, Devices that sense, enable, or create haptic interactions locally or at a distance, Haptic rendering and its association with graphic and auditory rendering in virtual reality, Algorithms, controls, and dynamics of haptic devices, users, and interactions between the two, Human-machine performance and safety with haptic feedback, Haptics in the context of human-computer interactions, Systems and networks using haptic devices and interactions, including multi-modal feedback, Application of the above, for example in areas such as education, rehabilitation, medicine, computer-aided design, skills training, computer games, driver controls, simulation, and visualization.