Enhancing maize's nitrogen-fixing potential through ZmSBT3, a gene suppressing mucilage secretion.

IF 9.3 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Integrative Plant Biology Pub Date : 2023-12-01 Epub Date: 2023-12-08 DOI:10.1111/jipb.13581
Jingyang Gao, Peijiang Feng, Jingli Zhang, Chaopei Dong, Zhao Wang, Mingxiang Chen, Zhongliang Yu, Bowen Zhao, Xin Hou, Huijuan Wang, Zhaokun Wu, Razia Sultana Jemim, Haidong Yu, Doudou Sun, Pei Jing, Jiafa Chen, Weibin Song, Xuecai Zhang, Zijian Zhou, Jianyu Wu
{"title":"Enhancing maize's nitrogen-fixing potential through ZmSBT3, a gene suppressing mucilage secretion.","authors":"Jingyang Gao, Peijiang Feng, Jingli Zhang, Chaopei Dong, Zhao Wang, Mingxiang Chen, Zhongliang Yu, Bowen Zhao, Xin Hou, Huijuan Wang, Zhaokun Wu, Razia Sultana Jemim, Haidong Yu, Doudou Sun, Pei Jing, Jiafa Chen, Weibin Song, Xuecai Zhang, Zijian Zhou, Jianyu Wu","doi":"10.1111/jipb.13581","DOIUrl":null,"url":null,"abstract":"<p><p>Maize (Zea mays) requires substantial amounts of nitrogen, posing a challenge for its cultivation. Recent work discovered that some ancient Mexican maize landraces harbored diazotrophic bacteria in mucilage secreted by their aerial roots. To see if this trait is retained in modern maize, we conducted a field study of aerial root mucilage (ARM) in 258 inbred lines. We observed that ARM secretion is common in modern maize, but the amount significantly varies, and only a few lines have retained the nitrogen-fixing traits found in ancient landraces. The mucilage of the high-ARM inbred line HN5-724 had high nitrogen-fixing enzyme activity and abundant diazotrophic bacteria. Our genome-wide association study identified 17 candidate genes associated with ARM across three environments. Knockouts of one candidate gene, the subtilase family gene ZmSBT3, confirmed that it negatively regulates ARM secretion. Notably, the ZmSBT3 knockout lines had increased biomass and total nitrogen accumulation under nitrogen-free culture conditions. High ARM was associated with three ZmSBT3 haplotypes that were gradually lost during maize domestication, being retained in only a few modern inbred lines such as HN5-724. In summary, our results identify ZmSBT3 as a potential tool for enhancing ARM, and thus nitrogen fixation, in maize.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":"2645-2659"},"PeriodicalIF":9.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/jipb.13581","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Maize (Zea mays) requires substantial amounts of nitrogen, posing a challenge for its cultivation. Recent work discovered that some ancient Mexican maize landraces harbored diazotrophic bacteria in mucilage secreted by their aerial roots. To see if this trait is retained in modern maize, we conducted a field study of aerial root mucilage (ARM) in 258 inbred lines. We observed that ARM secretion is common in modern maize, but the amount significantly varies, and only a few lines have retained the nitrogen-fixing traits found in ancient landraces. The mucilage of the high-ARM inbred line HN5-724 had high nitrogen-fixing enzyme activity and abundant diazotrophic bacteria. Our genome-wide association study identified 17 candidate genes associated with ARM across three environments. Knockouts of one candidate gene, the subtilase family gene ZmSBT3, confirmed that it negatively regulates ARM secretion. Notably, the ZmSBT3 knockout lines had increased biomass and total nitrogen accumulation under nitrogen-free culture conditions. High ARM was associated with three ZmSBT3 haplotypes that were gradually lost during maize domestication, being retained in only a few modern inbred lines such as HN5-724. In summary, our results identify ZmSBT3 as a potential tool for enhancing ARM, and thus nitrogen fixation, in maize.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过抑制粘液分泌的基因ZmSBT3提高玉米的固氮潜力。
玉米(Zea mays)需要大量的氮,这对其种植构成了挑战。最近的研究发现,一些古老的墨西哥玉米地方品种的气生根分泌的粘液中含有重氮营养细菌。为了观察这种特性是否在现代玉米中保留,我们对258个自交系的气生根粘液(ARM)进行了实地研究。我们观察到,ARM分泌在现代玉米中很常见,但数量差异很大,只有少数品系保留了古代地方品种中发现的固氮特性。高ARM自交系HN5-724的粘液具有较高的固氮酶活性和丰富的重氮营养菌。我们的全基因组关联研究(GWAS)在三种环境中鉴定了17个与ARM相关的候选基因。一个候选基因,枯草蛋白酶家族基因ZmSBT3的敲除证实了它对ARM分泌的负调控。值得注意的是,ZmSBT3敲除系在无氮培养条件下具有增加的生物量和总氮积累。高ARM与三种ZmSBT3单倍型有关,这些单倍型在玉米驯化过程中逐渐消失,仅保留在少数现代自交系中,如HN5-724。总之,我们的研究结果表明ZmSBT3是一种潜在的工具,可以增强玉米的ARM,从而提高玉米的固氮能力。这篇文章受版权保护。保留所有权利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Integrative Plant Biology
Journal of Integrative Plant Biology 生物-生化与分子生物学
CiteScore
18.00
自引率
5.30%
发文量
220
审稿时长
3 months
期刊介绍: Journal of Integrative Plant Biology is a leading academic journal reporting on the latest discoveries in plant biology.Enjoy the latest news and developments in the field, understand new and improved methods and research tools, and explore basic biological questions through reproducible experimental design, using genetic, biochemical, cell and molecular biological methods, and statistical analyses.
期刊最新文献
Cover Image: Issue information page Horizontal transposon transfer during plant terrestrialization. The ABC transporter SmABCG1 mediates tanshinones export from the peridermic cells of Salvia miltiorrhiza root. A resurfaced sensor NLR confers new recognition specificity to non-MAX effectors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1