Emma Baglini, Lorenzo Chiaverini, Iogann Tolbatov, Sabrina Taliani, Federico Da Settimo, Diego La Mendola, Elisabetta Barresi, Tiziano Marzo
{"title":"Tyrosine kinase inhibitors (TKIs) for ovarian cancer treatment: from organic to inorganic chemotherapeutics towards selectivity—a perspective overview","authors":"Emma Baglini, Lorenzo Chiaverini, Iogann Tolbatov, Sabrina Taliani, Federico Da Settimo, Diego La Mendola, Elisabetta Barresi, Tiziano Marzo","doi":"10.1007/s10534-023-00547-0","DOIUrl":null,"url":null,"abstract":"<div><p>Ovarian cancer (OC) is a lethal gynecologic cancer in industrialized countries. Treatments for OC include the surgical removal and chemotherapy. In the last decades, improvements have been made in the surgery technologies, drug combinations and administration protocols, and in diagnosis. However, mortality from OC is still high owing to recurrences and insurgence of drug resistance. Accordingly, it is urgent the development of novel agents capable to effectively target OC. In this respect, tyrosine kinase inhibitors (TKIs) may play an important role. Most of TKIs developed and tested so far are organic. However, owing to their chemical versatility, also metals can be exploited to design selective and potent TKIs. We provide a short and easy-to-read overview on the main organic TKIs with a summary of those that entered clinical trials. Additionally, we describe the potential of metal-based TKIs, focusing on this overlooked family of compounds that may significantly contribute towards the concept of precision-medicine.</p></div>","PeriodicalId":491,"journal":{"name":"Biometals","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11006779/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometals","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10534-023-00547-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ovarian cancer (OC) is a lethal gynecologic cancer in industrialized countries. Treatments for OC include the surgical removal and chemotherapy. In the last decades, improvements have been made in the surgery technologies, drug combinations and administration protocols, and in diagnosis. However, mortality from OC is still high owing to recurrences and insurgence of drug resistance. Accordingly, it is urgent the development of novel agents capable to effectively target OC. In this respect, tyrosine kinase inhibitors (TKIs) may play an important role. Most of TKIs developed and tested so far are organic. However, owing to their chemical versatility, also metals can be exploited to design selective and potent TKIs. We provide a short and easy-to-read overview on the main organic TKIs with a summary of those that entered clinical trials. Additionally, we describe the potential of metal-based TKIs, focusing on this overlooked family of compounds that may significantly contribute towards the concept of precision-medicine.
期刊介绍:
BioMetals is the only established journal to feature the important role of metal ions in chemistry, biology, biochemistry, environmental science, and medicine. BioMetals is an international, multidisciplinary journal singularly devoted to the rapid publication of the fundamental advances of both basic and applied research in this field. BioMetals offers a forum for innovative research and clinical results on the structure and function of:
- metal ions
- metal chelates,
- siderophores,
- metal-containing proteins
- biominerals in all biosystems.
- BioMetals rapidly publishes original articles and reviews.
BioMetals is a journal for metals researchers who practice in medicine, biochemistry, pharmacology, toxicology, microbiology, cell biology, chemistry, and plant physiology who are based academic, industrial and government laboratories.