Bartłomiej Zieniuk , Tomasz Maciej Stępniewski , Agata Fabiszewska
{"title":"Do they make a good match? Molecular dynamics studies on CALB-catalyzed esterification of 3-phenylpropionic and cinnamic acids","authors":"Bartłomiej Zieniuk , Tomasz Maciej Stępniewski , Agata Fabiszewska","doi":"10.1016/j.abb.2023.109807","DOIUrl":null,"url":null,"abstract":"<div><p>Lipases are versatile catalysts widely used in industrial biotransformations and laboratory-scale developed reactions with industrial potential. Despite the fact that lipase B from <em>Candida antarctica</em> (CALB) is one of the most widely used lipolytic enzymes, its substrate specificity is still poorly understood. One observed trend is that reactions carried out with carboxylic acids containing a double bond are less efficient on average. Here, we have utilized a combination of <em>in vitro</em> and <em>in silico</em> techniques, to better understand the negative impact of a double bond on CALB-mediated esterification. Then through extensive molecular dynamics (MD) simulations, we were able to map the entry pathway of cinnamic acid and its derivative into the CALB active site, and their interactions with catalytic residues. We observed a 2 step binding mechanism of studied compounds, where they first penetrate the enzyme pocket in a conformation where their carboxylic groups are extended towards the solvent. This is followed by further penetration of the acid into the enzymatic active pocket, and a full rotation within the active site, which orients the acid in a conformation that allows further steps of the esterification reaction. As acids containing a double bond are more rigid, their mobility and thus ability to rotate in the narrow CALB active site is hampered, which provides a structural explanation for the decreased efficiency of such acids. Our data provide insight into the substrate specificity of CALB-mediated esterification, providing important structural guidelines to better understand and potentially improve the efficiency of such reactions.</p></div>","PeriodicalId":8174,"journal":{"name":"Archives of biochemistry and biophysics","volume":"750 ","pages":"Article 109807"},"PeriodicalIF":3.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0003986123003065/pdfft?md5=cb912fa5bde72b3d50aab444746d3e21&pid=1-s2.0-S0003986123003065-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of biochemistry and biophysics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003986123003065","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lipases are versatile catalysts widely used in industrial biotransformations and laboratory-scale developed reactions with industrial potential. Despite the fact that lipase B from Candida antarctica (CALB) is one of the most widely used lipolytic enzymes, its substrate specificity is still poorly understood. One observed trend is that reactions carried out with carboxylic acids containing a double bond are less efficient on average. Here, we have utilized a combination of in vitro and in silico techniques, to better understand the negative impact of a double bond on CALB-mediated esterification. Then through extensive molecular dynamics (MD) simulations, we were able to map the entry pathway of cinnamic acid and its derivative into the CALB active site, and their interactions with catalytic residues. We observed a 2 step binding mechanism of studied compounds, where they first penetrate the enzyme pocket in a conformation where their carboxylic groups are extended towards the solvent. This is followed by further penetration of the acid into the enzymatic active pocket, and a full rotation within the active site, which orients the acid in a conformation that allows further steps of the esterification reaction. As acids containing a double bond are more rigid, their mobility and thus ability to rotate in the narrow CALB active site is hampered, which provides a structural explanation for the decreased efficiency of such acids. Our data provide insight into the substrate specificity of CALB-mediated esterification, providing important structural guidelines to better understand and potentially improve the efficiency of such reactions.
期刊介绍:
Archives of Biochemistry and Biophysics publishes quality original articles and reviews in the developing areas of biochemistry and biophysics.
Research Areas Include:
• Enzyme and protein structure, function, regulation. Folding, turnover, and post-translational processing
• Biological oxidations, free radical reactions, redox signaling, oxygenases, P450 reactions
• Signal transduction, receptors, membrane transport, intracellular signals. Cellular and integrated metabolism.