{"title":"CUDC-907 exhibits potent antitumor effects against ovarian cancer through multiple in vivo and in vitro mechanisms.","authors":"Yuanpei Wang, Jing Wen, Xiangyi Sun, Yi Sun, Yuchen Liu, Xiaoran Cheng, Weijia Wu, Qianwen Liu, Fang Ren","doi":"10.1007/s00280-023-04610-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>CUDC-907 is a promising dual-target inhibitor of the HDAC and PI3K signaling pathways, with demonstrated therapeutic effects in a range of malignant tumors. However, its potential application in ovarian cancer (OC) has not been fully explored yet. In this study, we sought to investigate the efficacy of CUDC-907 in treating OC, both in vitro and in vivo.</p><p><strong>Methods: </strong>Here, we examined the correlation between PI3K or HDAC expression and the prognosis of OC patients using the GEPIA database. RNA-Seq analysis was performed on OC cells treated with CUDC-907.To assess various cellular processes, including proliferation, migration, invasion, apoptosis, and cell cycle, we performed a series of assays, including the CCK8, EDU, wound healing, cell invasion, and flow cytometry assays. Real-time quantitative PCR and western blotting were performed to measure the expressions of target genes. Additionally, we utilized the SKOV3 xenograft tumor model to investigate the inhibitory effects of CUDC-907 on tumor growth in vivo.</p><p><strong>Results: </strong>Bioinformatics analyses revealed that up-regulated HDAC and PI3K were significantly correlated with patients' poor survival in OC. In vivo and in vitro experiments have demonstrated that CUDC-907 could inhibit the proliferation of OC cells by inhibiting the PI3K and HDAC pathways to down-regulate the expression of c-Myc, and induce cell apoptosis by inhibiting the PI3K/AKT/Bcl-2 pathway, and up-regulate p21 to induce G2 /M phase arrest.</p><p><strong>Conclusion: </strong>Our results showed that CUDC-907 had powerful anti-tumor effects on OC, which could provide a theoretical and experimental basis for the application of CUDC-907 in the therapy of OC.</p>","PeriodicalId":9556,"journal":{"name":"Cancer Chemotherapy and Pharmacology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Chemotherapy and Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00280-023-04610-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: CUDC-907 is a promising dual-target inhibitor of the HDAC and PI3K signaling pathways, with demonstrated therapeutic effects in a range of malignant tumors. However, its potential application in ovarian cancer (OC) has not been fully explored yet. In this study, we sought to investigate the efficacy of CUDC-907 in treating OC, both in vitro and in vivo.
Methods: Here, we examined the correlation between PI3K or HDAC expression and the prognosis of OC patients using the GEPIA database. RNA-Seq analysis was performed on OC cells treated with CUDC-907.To assess various cellular processes, including proliferation, migration, invasion, apoptosis, and cell cycle, we performed a series of assays, including the CCK8, EDU, wound healing, cell invasion, and flow cytometry assays. Real-time quantitative PCR and western blotting were performed to measure the expressions of target genes. Additionally, we utilized the SKOV3 xenograft tumor model to investigate the inhibitory effects of CUDC-907 on tumor growth in vivo.
Results: Bioinformatics analyses revealed that up-regulated HDAC and PI3K were significantly correlated with patients' poor survival in OC. In vivo and in vitro experiments have demonstrated that CUDC-907 could inhibit the proliferation of OC cells by inhibiting the PI3K and HDAC pathways to down-regulate the expression of c-Myc, and induce cell apoptosis by inhibiting the PI3K/AKT/Bcl-2 pathway, and up-regulate p21 to induce G2 /M phase arrest.
Conclusion: Our results showed that CUDC-907 had powerful anti-tumor effects on OC, which could provide a theoretical and experimental basis for the application of CUDC-907 in the therapy of OC.
期刊介绍:
Addressing a wide range of pharmacologic and oncologic concerns on both experimental and clinical levels, Cancer Chemotherapy and Pharmacology is an eminent journal in the field. The primary focus in this rapid publication medium is on new anticancer agents, their experimental screening, preclinical toxicology and pharmacology, single and combined drug administration modalities, and clinical phase I, II and III trials. It is essential reading for pharmacologists and oncologists giving results recorded in the following areas: clinical toxicology, pharmacokinetics, pharmacodynamics, drug interactions, and indications for chemotherapy in cancer treatment strategy.