Šárka Bobková, Dana Baudišová, František Kožíšek, Hana Jeligová, Petr Pumann
{"title":"Quality of rainwater and reclaimed water used in buildings and selection of appropriate indicators.","authors":"Šárka Bobková, Dana Baudišová, František Kožíšek, Hana Jeligová, Petr Pumann","doi":"10.21101/cejph.a7884","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The use of alternative water sources such as rainwater or greywater (i.e., wastewater excluding water from toilets) for non-potable purposes may save water but, on the other hand, can also pose health risks to users. The main health risks come from microorganisms (such as bacteria, viruses, fungi, and protozoa). This work aims to analyse especially microbiological quality of rainwater and greywater used inside buildings in detail and to expand the existing knowledge about the potential health risks associated with these alternative water sources. It also considers methodological problems during E. coli and coliform bacteria detection. The final objective is to discuss requirements and appropriate indicators for monitoring recycled water quality.</p><p><strong>Methods: </strong>We examined 30 buildings with non-potable water systems in the Czech Republic and analysed a total of 137 samples of rainwater and 120 samples of greywater. From these 30 buildings, eleven, 5 of which used rainwater and 6 of which used greywater, were sampled regularly for 1-2 years for basic chemical parameters, various faecal indicators, C. perfringens, Legionella spp. and P. aeruginosa. Occasionally, samples were analysed also for the presence of environmental mycobacteria, amoebas, viruses, and selected pathogens.</p><p><strong>Results: </strong>Nearly three quarters of rainwater samples contained the faecal indicators E. coli or enterococci, or both, and in samples from several buildings also Clostridium perfringens was repeatedly detected. Untreated and treated rainwater were in respect to microbiological quality similar, suggesting that treatment processes were not very efficient. In greywater samples, beside faecal indicators, also P. aeruginosa and thermotolerant amoebas were repeatedly detected. Treatment technologies used for greywater were more efficient than those for rainwater systems.</p><p><strong>Conclusion: </strong>Based on the results we evaluated appropriate indicators for monitoring recycled water quality and drafted the first Czech regulation for non-potable water.</p>","PeriodicalId":9823,"journal":{"name":"Central European journal of public health","volume":"31 3","pages":"155-165"},"PeriodicalIF":1.1000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European journal of public health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21101/cejph.a7884","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: The use of alternative water sources such as rainwater or greywater (i.e., wastewater excluding water from toilets) for non-potable purposes may save water but, on the other hand, can also pose health risks to users. The main health risks come from microorganisms (such as bacteria, viruses, fungi, and protozoa). This work aims to analyse especially microbiological quality of rainwater and greywater used inside buildings in detail and to expand the existing knowledge about the potential health risks associated with these alternative water sources. It also considers methodological problems during E. coli and coliform bacteria detection. The final objective is to discuss requirements and appropriate indicators for monitoring recycled water quality.
Methods: We examined 30 buildings with non-potable water systems in the Czech Republic and analysed a total of 137 samples of rainwater and 120 samples of greywater. From these 30 buildings, eleven, 5 of which used rainwater and 6 of which used greywater, were sampled regularly for 1-2 years for basic chemical parameters, various faecal indicators, C. perfringens, Legionella spp. and P. aeruginosa. Occasionally, samples were analysed also for the presence of environmental mycobacteria, amoebas, viruses, and selected pathogens.
Results: Nearly three quarters of rainwater samples contained the faecal indicators E. coli or enterococci, or both, and in samples from several buildings also Clostridium perfringens was repeatedly detected. Untreated and treated rainwater were in respect to microbiological quality similar, suggesting that treatment processes were not very efficient. In greywater samples, beside faecal indicators, also P. aeruginosa and thermotolerant amoebas were repeatedly detected. Treatment technologies used for greywater were more efficient than those for rainwater systems.
Conclusion: Based on the results we evaluated appropriate indicators for monitoring recycled water quality and drafted the first Czech regulation for non-potable water.
期刊介绍:
The Journal publishes original articles on disease prevention and health protection, environmental impacts on health, the role of nutrition in health promotion, results of population health studies and critiques of specific health issues including intervention measures such as vaccination and its effectiveness. The review articles are targeted at providing up-to-date information in the sphere of public health. The Journal is geographically targeted at the European region but will accept specialised articles from foreign sources that contribute to public health issues also applicable to the European cultural milieu.