Spectrofluorimetric Protocol for Estimation of Commonly Used Antispasmodic Drotaverine. Fluorescence Quenching Study.

IF 2.6 4区 化学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of Fluorescence Pub Date : 2024-11-01 Epub Date: 2023-11-06 DOI:10.1007/s10895-023-03487-7
Sayed M Derayea, Nihad A Mahmoud, Deena A M Noureldeen, Tamer Z Attia
{"title":"Spectrofluorimetric Protocol for Estimation of Commonly Used Antispasmodic Drotaverine. Fluorescence Quenching Study.","authors":"Sayed M Derayea, Nihad A Mahmoud, Deena A M Noureldeen, Tamer Z Attia","doi":"10.1007/s10895-023-03487-7","DOIUrl":null,"url":null,"abstract":"<p><p>A fast, simple, accurate, precise, and cheap fluorimetric protocol has been proposed for analysis of a phosphodiesterase-IV inhibitor, namely drotaverine hydrochloride. Fluorimetric protocol is based on estimating the decrease in the eosin Y fluorescence intensity by quantitative addition of drotaverine at pH 3.1 (acetate buffer). An ion pair complex is formed, which leads to quenching in the fluorescence intensity of the dye without need of prior extraction at 534 nm (λ<sub>ex</sub>. 339 nm). Different reaction perimeters which influence the production of complex (ion pair between drotaverine and eosin) were deeply investigated and optimized. The developed fluorimetric protocol is capable for quantitative estimation of drotaverine in linear range of 0.4 to 2.5 µg mL<sup>-1</sup>. After method validation in respect to ICH guidelines, it was applied to determine drotaverine in its commercial preparation. By comparing with other reported method, the developed and validated fluorimetric protocol is capable for estimation of drotaverine in commercial preparation with good accuracy and excellent precision.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":"2837-2844"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604728/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-023-03487-7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

A fast, simple, accurate, precise, and cheap fluorimetric protocol has been proposed for analysis of a phosphodiesterase-IV inhibitor, namely drotaverine hydrochloride. Fluorimetric protocol is based on estimating the decrease in the eosin Y fluorescence intensity by quantitative addition of drotaverine at pH 3.1 (acetate buffer). An ion pair complex is formed, which leads to quenching in the fluorescence intensity of the dye without need of prior extraction at 534 nm (λex. 339 nm). Different reaction perimeters which influence the production of complex (ion pair between drotaverine and eosin) were deeply investigated and optimized. The developed fluorimetric protocol is capable for quantitative estimation of drotaverine in linear range of 0.4 to 2.5 µg mL-1. After method validation in respect to ICH guidelines, it was applied to determine drotaverine in its commercial preparation. By comparing with other reported method, the developed and validated fluorimetric protocol is capable for estimation of drotaverine in commercial preparation with good accuracy and excellent precision.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
荧光光谱法测定常用抗痉挛药物屈他韦林。荧光猝灭研究。
已经提出了一种快速、简单、准确、精确和廉价的荧光分析方案来分析磷酸二酯酶IV抑制剂,即盐酸屈他韦林。荧光方案基于在pH 3.1(乙酸盐缓冲液)下通过定量添加屈他韦林来估计曙红Y荧光强度的降低。形成离子对络合物,这导致染料的荧光强度在534nm(λex.339nm)处猝灭,而不需要事先提取。深入研究并优化了影响复合物(drotaverine和曙红之间的离子对)产生的不同反应周长。所开发的荧光方案能够在0.4至2.5µg mL-1的线性范围内定量估计屈他韦林。在根据ICH指南进行方法验证后,将其用于测定其商业制剂中的屈他韦林。与其他报道的方法相比,所开发和验证的荧光方案能够以良好的准确性和精密度估计商业制剂中的屈他韦林。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Fluorescence
Journal of Fluorescence 化学-分析化学
CiteScore
4.60
自引率
7.40%
发文量
203
审稿时长
5.4 months
期刊介绍: Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.
期刊最新文献
Design and Characterization of Novel Naphthalimide Fluorescent Probe for H2S Detection in Human Serum. Synthesis, Trans-Cis Photoisomerization, Fluorescence Decay Studies of Methoxy Ester Functionalized Alkoxy Side Chain Azobenzene Compounds and Their Photoluminescence Dynamics. Highly Sensitive and Selective Detection of Hg2+ ions and Antibacterial Activity Using a Schiff-base Derivative. Synthesize of an Azo Compound: Investigation its Optical Nonlinear Properties and DFT Study. Impact of Sensitizer Yb3+ on Structural and Optical Properties of AE2SiO4 (AE = Ba, Ca, Sr) Orthosilicates.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1