Integrative transcriptomic and metabolomic analyses reveal the phenylpropanoid and flavonoid biosynthesis of Prunus mume.

IF 2.7 3区 生物学 Q2 PLANT SCIENCES Journal of Plant Research Pub Date : 2024-01-01 Epub Date: 2023-11-08 DOI:10.1007/s10265-023-01500-5
Rui Wu, Chengcheng Qian, Yatian Yang, Yi Liu, Liang Xu, Wei Zhang, Jinmei Ou
{"title":"Integrative transcriptomic and metabolomic analyses reveal the phenylpropanoid and flavonoid biosynthesis of Prunus mume.","authors":"Rui Wu, Chengcheng Qian, Yatian Yang, Yi Liu, Liang Xu, Wei Zhang, Jinmei Ou","doi":"10.1007/s10265-023-01500-5","DOIUrl":null,"url":null,"abstract":"<p><p>Prunus mume is an important medicinal plant with ornamental and edible value. Its flowers contain phenylpropanoids, flavonoids and other active components, that have important medicinal and edible value, yet their molecular regulatory mechanisms in P. mume remain unclear. In this study, the content of total flavonoid and total phenylpropanoid of P. mume at different developmental periods was measured first, and the results showed that the content of total flavonoid and total phenylpropanoid gradually decreased in three developmental periods. Then, an integrated analysis of transcriptome and metabolome was conducted on three developmental periods of P. mume to investigate the law of synthetic accumulation for P. mume metabolites, and the key enzyme genes for the biosynthesis of phenylpropanoids and flavonoids were screened out according to the differentially expressed genes (DEGs). A total of 14,332 DEGs and 38 differentially accumulate metabolites (DAMs) were obtained by transcriptomics and metabolomics analysis. The key enzyme genes and metabolites in the bud (HL) were significantly different from those in the half-opening (BK) and full-opening (QK) periods. In the phenylpropanoid and flavonoid biosynthesis pathway, the ion abundance of chlorogenic acid, naringenin, kaempferol, isoquercitrin, rutin and other metabolites decreased with the development of flowers, while the ion abundance of cinnamic acid increased. Key enzyme genes such as HCT, CCR, COMT, CHS, F3H, and FLS positively regulate the downstream metabolites, while PAL, C4H, and 4CL negatively regulate the downstream metabolites. Moreover, the key genes FLS (CL4312-2, CL4312-3, CL4312-4, CL4312-5, CL4312-6) regulating the synthesis of flavonols are highly expressed in bud samples. The dynamic changes of these metabolites were validated by determining the content of 14 phenylpropanoids and flavonoids in P. mume at different developmental periods, and the transcription expression levels of these genes were validated by real-time PCR. Our study provides new insights into the molecular mechanism of phenylpropanoid and flavonoid accumulation in P. mume.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10265-023-01500-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Prunus mume is an important medicinal plant with ornamental and edible value. Its flowers contain phenylpropanoids, flavonoids and other active components, that have important medicinal and edible value, yet their molecular regulatory mechanisms in P. mume remain unclear. In this study, the content of total flavonoid and total phenylpropanoid of P. mume at different developmental periods was measured first, and the results showed that the content of total flavonoid and total phenylpropanoid gradually decreased in three developmental periods. Then, an integrated analysis of transcriptome and metabolome was conducted on three developmental periods of P. mume to investigate the law of synthetic accumulation for P. mume metabolites, and the key enzyme genes for the biosynthesis of phenylpropanoids and flavonoids were screened out according to the differentially expressed genes (DEGs). A total of 14,332 DEGs and 38 differentially accumulate metabolites (DAMs) were obtained by transcriptomics and metabolomics analysis. The key enzyme genes and metabolites in the bud (HL) were significantly different from those in the half-opening (BK) and full-opening (QK) periods. In the phenylpropanoid and flavonoid biosynthesis pathway, the ion abundance of chlorogenic acid, naringenin, kaempferol, isoquercitrin, rutin and other metabolites decreased with the development of flowers, while the ion abundance of cinnamic acid increased. Key enzyme genes such as HCT, CCR, COMT, CHS, F3H, and FLS positively regulate the downstream metabolites, while PAL, C4H, and 4CL negatively regulate the downstream metabolites. Moreover, the key genes FLS (CL4312-2, CL4312-3, CL4312-4, CL4312-5, CL4312-6) regulating the synthesis of flavonols are highly expressed in bud samples. The dynamic changes of these metabolites were validated by determining the content of 14 phenylpropanoids and flavonoids in P. mume at different developmental periods, and the transcription expression levels of these genes were validated by real-time PCR. Our study provides new insights into the molecular mechanism of phenylpropanoid and flavonoid accumulation in P. mume.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
综合转录组学和代谢组学分析揭示了梅花的苯丙烷和类黄酮生物合成。
梅花是一种重要的药用植物,具有观赏和食用价值。其花中含有苯丙素、黄酮类化合物和其他活性成分,具有重要的药用和食用价值,但其在菊花中的分子调控机制尚不清楚。本研究首先测定了不同发育时期梅的总黄酮和总苯丙素含量,结果表明,在三个发育时期,总黄酮和全苯丙素的含量逐渐下降。然后,对三个发育时期的木乃伊进行了转录组和代谢组的综合分析,研究了木乃伊代谢物的合成积累规律,并根据差异表达基因(DEGs)筛选出了生物合成苯丙烷类和类黄酮的关键酶基因。通过转录组学和代谢组学分析,共获得14332个DEG和38个差异积累代谢产物(DAM)。芽期(HL)的关键酶基因和代谢产物与半开放期(BK)和全开放期(QK)有显著差异。在苯丙烷和类黄酮生物合成途径中,绿原酸、柚皮素、山奈酚、异槲皮苷、芦丁等代谢产物的离子丰度随着花的发育而降低,而肉桂酸的离子丰度增加。关键酶基因如HCT、CCR、COMT、CHS、F3H和FLS正向调节下游代谢产物,而PAL、C4H和4CL负向调节下游代谢物。此外,调控黄酮醇合成的关键基因FLS(CL4312-2、CL4312-3、CL4312-4、CL4312-5、CL4312-6)在芽样品中高度表达。通过测定14种苯丙烷类化合物和黄酮类化合物在不同发育时期的含量,验证了这些代谢产物的动态变化,并通过实时PCR验证了这些基因的转录表达水平。我们的研究为苯丙素和类黄酮在菊花中积累的分子机制提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Plant Research
Journal of Plant Research 生物-植物科学
CiteScore
5.40
自引率
3.60%
发文量
59
审稿时长
1 months
期刊介绍: The Journal of Plant Research is an international publication that gathers and disseminates fundamental knowledge in all areas of plant sciences. Coverage extends to every corner of the field, including such topics as evolutionary biology, phylogeography, phylogeny, taxonomy, genetics, ecology, morphology, physiology, developmental biology, cell biology, molecular biology, biochemistry, biophysics, bioinformatics, and systems biology. The journal presents full-length research articles that describe original and fundamental findings of significance that contribute to understanding of plants, as well as shorter communications reporting significant new findings, technical notes on new methodology, and invited review articles.
期刊最新文献
Acknowledgement. Intricate intracellular kinase network regulates the Spodoptera lituta-derived elicitor response signaling in Arabidopsis. Female flowers with short ovaries in 'Lemon' cucumber (Cucumis sativus) plants and their progeny carrying the mm genotype (CS-ACS2 genes with c.97G > T mutations): a novel trimonoecious phenotype. Identification and functional analysis of the Dof transcription factor genes in sugar beet. Expression of laccase and ascorbate oxidase affects lignin composition in Arabidopsis thaliana stems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1