{"title":"Automatic selection of IMFs to denoise the sEMG signals using EMD","authors":"Pratap Kumar Koppolu, Krishnan Chemmangat","doi":"10.1016/j.jelekin.2023.102834","DOIUrl":null,"url":null,"abstract":"<div><p><span>Surface Electromyography (sEMG) signals are muscle activation signals, which has applications in muscle diagnosis, rehabilitation, prosthetics, and speech etc. However, they are known to be affected by noises such as Power Line Interference (PLI), motion artifacts etc. Currently, Empirical Mode Decomposition (EMD) and its modifications such as Ensemble EMD (EEMD), and Complementary EEMD (CEEMD) are used to decompose EMG into a series of Intrinsic Mode Functions (IMFs). The denoised EMG can be obtained from the selected IMFs. Statistical methods are used to select the signal dominant IMFs to reconstruct the denoised signal. In this work, a novel procedure is proposed to automatically separate noisy IMFs from the original sEMG signal. For this purpose, Permutation Entropy (PE) is employed in EEMD sifting process called Partly EEMD (PEEMD), to separate the noisy IMFs from the original sEMG signal according to the preset PE threshold. PEEMD decomposes the original signal into various modes according to a preset PE threshold and the denoised signal is reconstructed from resultant IMFs. The PEEMD denoising procedure is applied on the experimental sEMG data collected from eight subjects, that include six various upper limb movement classes. The proposed denoising procedure achieved an improved denoising performance in comparison with EMD, EEMD, and CEEMD. An alternate measure called Sample Entropy (SE) is also used in place of PE, for the automated sifting process as a comparison. </span>Signal to Noise Ratio (SNR), Root Mean Square Error (RMSE), and Reconstruction Error (RE) parameters are used to evaluate the denoising performance. The results, averaged across eight subjects, demonstrate that the proposed denoising procedure outperforms the state-of-the-art EMD techniques in terms of these performance measures on the experimentally collected sEMG data samples.</p></div>","PeriodicalId":56123,"journal":{"name":"Journal of Electromyography and Kinesiology","volume":"73 ","pages":"Article 102834"},"PeriodicalIF":2.0000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electromyography and Kinesiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1050641123000937","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Surface Electromyography (sEMG) signals are muscle activation signals, which has applications in muscle diagnosis, rehabilitation, prosthetics, and speech etc. However, they are known to be affected by noises such as Power Line Interference (PLI), motion artifacts etc. Currently, Empirical Mode Decomposition (EMD) and its modifications such as Ensemble EMD (EEMD), and Complementary EEMD (CEEMD) are used to decompose EMG into a series of Intrinsic Mode Functions (IMFs). The denoised EMG can be obtained from the selected IMFs. Statistical methods are used to select the signal dominant IMFs to reconstruct the denoised signal. In this work, a novel procedure is proposed to automatically separate noisy IMFs from the original sEMG signal. For this purpose, Permutation Entropy (PE) is employed in EEMD sifting process called Partly EEMD (PEEMD), to separate the noisy IMFs from the original sEMG signal according to the preset PE threshold. PEEMD decomposes the original signal into various modes according to a preset PE threshold and the denoised signal is reconstructed from resultant IMFs. The PEEMD denoising procedure is applied on the experimental sEMG data collected from eight subjects, that include six various upper limb movement classes. The proposed denoising procedure achieved an improved denoising performance in comparison with EMD, EEMD, and CEEMD. An alternate measure called Sample Entropy (SE) is also used in place of PE, for the automated sifting process as a comparison. Signal to Noise Ratio (SNR), Root Mean Square Error (RMSE), and Reconstruction Error (RE) parameters are used to evaluate the denoising performance. The results, averaged across eight subjects, demonstrate that the proposed denoising procedure outperforms the state-of-the-art EMD techniques in terms of these performance measures on the experimentally collected sEMG data samples.
期刊介绍:
Journal of Electromyography & Kinesiology is the primary source for outstanding original articles on the study of human movement from muscle contraction via its motor units and sensory system to integrated motion through mechanical and electrical detection techniques.
As the official publication of the International Society of Electrophysiology and Kinesiology, the journal is dedicated to publishing the best work in all areas of electromyography and kinesiology, including: control of movement, muscle fatigue, muscle and nerve properties, joint biomechanics and electrical stimulation. Applications in rehabilitation, sports & exercise, motion analysis, ergonomics, alternative & complimentary medicine, measures of human performance and technical articles on electromyographic signal processing are welcome.