Targeting Aminoglycoside Acetyltransferase Activity of Mycobacterium tuberculosis (H37Rv) Derived Eis (Enhanced Intracellular Survival) Protein with Quercetin

IF 1.9 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY The Protein Journal Pub Date : 2023-11-06 DOI:10.1007/s10930-023-10165-x
Logesh Radhakrishnan, Rahul Dani, Irfan Navabshan, Shazia Jamal, Neesar Ahmed
{"title":"Targeting Aminoglycoside Acetyltransferase Activity of Mycobacterium tuberculosis (H37Rv) Derived Eis (Enhanced Intracellular Survival) Protein with Quercetin","authors":"Logesh Radhakrishnan,&nbsp;Rahul Dani,&nbsp;Irfan Navabshan,&nbsp;Shazia Jamal,&nbsp;Neesar Ahmed","doi":"10.1007/s10930-023-10165-x","DOIUrl":null,"url":null,"abstract":"<div><p>Eis (Enhanced intracellular survival) protein is an aminoglycoside acetyltransferase enzyme classified under the family – GNAT (GCN5-related family of N-acetyltransferases) secreted by <i>Mycobacterium tuberculosis (Mtb).</i> The enzymatic activity of Eis results in the acetylation of kanamycin, thereby impairing the drug’s action. In this study, we expressed and purified recombinant Eis (rEis) to determine the enzymatic activity of Eis and its potential inhibitor. Glide-enhanced precision docking was used to perform molecular docking with chosen ligands. Quercetin was found to interact Eis with a maximum binding affinity of -8.379 kcal/mol as compared to other ligands. Quercetin shows a specific interaction between the positively charged amino acid arginine in Eis and the aromatic ring of quercetin through π-cation interaction. Further, the effect of rEis was studied on the antibiotic activity of kanamycin A in the presence and absence of quercetin. It was observed that the activity of rEis aminoglycoside acetyltransferase decreased with increasing quercetin concentration. The results from the disk diffusion assay confirmed that increasing the concentration of quercetin inhibits the rEis protein activity. In conclusion, quercetin may act as a potential Eis inhibitor.</p></div>","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Protein Journal","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1007/s10930-023-10165-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Eis (Enhanced intracellular survival) protein is an aminoglycoside acetyltransferase enzyme classified under the family – GNAT (GCN5-related family of N-acetyltransferases) secreted by Mycobacterium tuberculosis (Mtb). The enzymatic activity of Eis results in the acetylation of kanamycin, thereby impairing the drug’s action. In this study, we expressed and purified recombinant Eis (rEis) to determine the enzymatic activity of Eis and its potential inhibitor. Glide-enhanced precision docking was used to perform molecular docking with chosen ligands. Quercetin was found to interact Eis with a maximum binding affinity of -8.379 kcal/mol as compared to other ligands. Quercetin shows a specific interaction between the positively charged amino acid arginine in Eis and the aromatic ring of quercetin through π-cation interaction. Further, the effect of rEis was studied on the antibiotic activity of kanamycin A in the presence and absence of quercetin. It was observed that the activity of rEis aminoglycoside acetyltransferase decreased with increasing quercetin concentration. The results from the disk diffusion assay confirmed that increasing the concentration of quercetin inhibits the rEis protein activity. In conclusion, quercetin may act as a potential Eis inhibitor.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
槲皮素靶向结核分枝杆菌(H37Rv)衍生的细胞内存活增强蛋白的氨基糖苷乙酰转移酶活性。
Eis(Enhanced cellular survival)蛋白是一种氨基糖苷乙酰转移酶,属于结核分枝杆菌(Mtb)分泌的GNAT家族(GCN5相关的N-乙酰转移酶家族)。艾斯的酶活性导致卡那霉素的乙酰化,从而削弱药物的作用。在本研究中,我们表达并纯化了重组Eis(rEis),以测定Eis的酶活性及其潜在的抑制剂。Glide增强精密对接用于与选定的配体进行分子对接。与其他配体相比,槲皮素与Eis相互作用的最大结合亲和力为-8.379 kcal/mol。槲皮素通过π-阳离子相互作用,表现出Eis中带正电荷的氨基酸精氨酸与槲皮素的芳香环之间的特异性相互作用。此外,研究了在槲皮素存在和不存在的情况下,rEis对卡那霉素A的抗生素活性的影响。随着槲皮素浓度的增加,rEis氨基糖苷乙酰转移酶活性降低。来自盘扩散测定的结果证实,增加槲皮素的浓度抑制rEis蛋白活性。总之,槲皮素可能是一种潜在的Eis抑制剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The Protein Journal
The Protein Journal 生物-生化与分子生物学
CiteScore
5.20
自引率
0.00%
发文量
57
审稿时长
12 months
期刊介绍: The Protein Journal (formerly the Journal of Protein Chemistry) publishes original research work on all aspects of proteins and peptides. These include studies concerned with covalent or three-dimensional structure determination (X-ray, NMR, cryoEM, EPR/ESR, optical methods, etc.), computational aspects of protein structure and function, protein folding and misfolding, assembly, genetics, evolution, proteomics, molecular biology, protein engineering, protein nanotechnology, protein purification and analysis and peptide synthesis, as well as the elucidation and interpretation of the molecular bases of biological activities of proteins and peptides. We accept original research papers, reviews, mini-reviews, hypotheses, opinion papers, and letters to the editor.
期刊最新文献
Influence of Cataract Causing Mutations on αA-Crystallin: A Computational Approach Unraveling the interaction between a glycolytic regulator protein EhPpdk and an anaphase promoting complex protein EhApc10: yeast two hybrid screening, in vitro binding assays and molecular simulation study Unravelling the Significance of Seed Proteomics: Insights into Seed Development, Function, and Agricultural Applications HaloClass: Salt-Tolerant Protein Classification with Protein Language Models Exosomes with Engineered Brain Derived Neurotrophic Factor on Their Surfaces Can Proliferate Menstrual Blood Derived Mesenchymal Stem Cells: Targeted Delivery for a Protein Drug
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1