{"title":"Binary stars in the new millennium","authors":"Xuefei Chen, Zhengwei Liu, Zhanwen Han","doi":"10.1016/j.ppnp.2023.104083","DOIUrl":null,"url":null,"abstract":"<div><p>Binary stars are as common as single stars. Binary stars are of immense importance to astrophysicists because that they allow us to determine the masses of the stars independent of their distances. They are the cornerstone of the understanding of stellar evolutionary theory and play an essential role in cosmic distance measurement, galactic evolution, nucleosynthesis and the formation of important objects such as cataclysmic variable stars, X-ray binaries, Type Ia supernovae, and gravitational wave-producing double compact objects. In this article, we review the significant theoretical and observational progresses in addressing binary stars in the new millennium. Increasing large survey projects have led to the discovery of enormous numbers of binary stars, which enables us to conduct statistical studies of binary populations, and therefore provide unprecedented insight into the stellar and binary evolution physics. Meanwhile, the rapid development of theoretical concepts and numerical approaches for binary evolution have made a substantial progress on the alleviation of some long-standing binary-related problems such as the stability of mass transfer and common envelope evolution. Nevertheless, it remains a challenge to have a full understanding of fundamental problems of stellar and binary astrophysics. The upcoming massive survey projects and increasingly sophisticated computational methods will lead to future progress.</p></div>","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":"134 ","pages":"Article 104083"},"PeriodicalIF":14.5000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0146641023000649/pdfft?md5=aff98a5df6b4d91a26d359a2563e7dba&pid=1-s2.0-S0146641023000649-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Particle and Nuclear Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0146641023000649","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Binary stars are as common as single stars. Binary stars are of immense importance to astrophysicists because that they allow us to determine the masses of the stars independent of their distances. They are the cornerstone of the understanding of stellar evolutionary theory and play an essential role in cosmic distance measurement, galactic evolution, nucleosynthesis and the formation of important objects such as cataclysmic variable stars, X-ray binaries, Type Ia supernovae, and gravitational wave-producing double compact objects. In this article, we review the significant theoretical and observational progresses in addressing binary stars in the new millennium. Increasing large survey projects have led to the discovery of enormous numbers of binary stars, which enables us to conduct statistical studies of binary populations, and therefore provide unprecedented insight into the stellar and binary evolution physics. Meanwhile, the rapid development of theoretical concepts and numerical approaches for binary evolution have made a substantial progress on the alleviation of some long-standing binary-related problems such as the stability of mass transfer and common envelope evolution. Nevertheless, it remains a challenge to have a full understanding of fundamental problems of stellar and binary astrophysics. The upcoming massive survey projects and increasingly sophisticated computational methods will lead to future progress.
期刊介绍:
Taking the format of four issues per year, the journal Progress in Particle and Nuclear Physics aims to discuss new developments in the field at a level suitable for the general nuclear and particle physicist and, in greater technical depth, to explore the most important advances in these areas. Most of the articles will be in one of the fields of nuclear physics, hadron physics, heavy ion physics, particle physics, as well as astrophysics and cosmology. A particular effort is made to treat topics of an interface type for which both particle and nuclear physics are important. Related topics such as detector physics, accelerator physics or the application of nuclear physics in the medical and archaeological fields will also be treated from time to time.