{"title":"Developing solid oxide cells for sustainable generation of chemicals","authors":"Xiaoyong Xu, Xu Han, Yao Zheng, Wei Zhou, Kenneth Davey, Shi-Zhang Qiao","doi":"10.1016/j.checat.2023.100794","DOIUrl":null,"url":null,"abstract":"<p>High-temperature solid oxide cells (SOCs) can be used as a practical alternative for generation of value-added chemicals and energy-intensive fuels. Here we (1) report a comparative summary of SOC applications and their different structures, (2) appraise fundamentals of SOC configurations and thermal dynamics for generation of chemicals, including H<sub>2</sub>, CO, HCN, NO, C<sub>6</sub>H<sub>6</sub>, and C<sub>1</sub> and C<sub>2</sub> hydrocarbons, together with SOC coupling for generation of CH<sub>4</sub>, CH<sub>3</sub>OH and NH<sub>3</sub>, and (3) assess current research to support future SOC research. We conclude that (1) SOCs can be used as an electrochemical refinery (e-refinery) for sustainable generation of chemicals and (2) because of high-temperature operation, SOCs are advantageous over low-temperature fuel cells and electrolyser technologies in terms of nonprecious metal catalysts, high efficiency, and high kinetics. Findings will be of benefit in practical design for SOCs as an e-refinery for generation of chemicals and, therefore, of wide interest to researchers and manufacturers.</p>","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"79 3","pages":""},"PeriodicalIF":11.5000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.checat.2023.100794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
High-temperature solid oxide cells (SOCs) can be used as a practical alternative for generation of value-added chemicals and energy-intensive fuels. Here we (1) report a comparative summary of SOC applications and their different structures, (2) appraise fundamentals of SOC configurations and thermal dynamics for generation of chemicals, including H2, CO, HCN, NO, C6H6, and C1 and C2 hydrocarbons, together with SOC coupling for generation of CH4, CH3OH and NH3, and (3) assess current research to support future SOC research. We conclude that (1) SOCs can be used as an electrochemical refinery (e-refinery) for sustainable generation of chemicals and (2) because of high-temperature operation, SOCs are advantageous over low-temperature fuel cells and electrolyser technologies in terms of nonprecious metal catalysts, high efficiency, and high kinetics. Findings will be of benefit in practical design for SOCs as an e-refinery for generation of chemicals and, therefore, of wide interest to researchers and manufacturers.
期刊介绍:
Chem Catalysis is a monthly journal that publishes innovative research on fundamental and applied catalysis, providing a platform for researchers across chemistry, chemical engineering, and related fields. It serves as a premier resource for scientists and engineers in academia and industry, covering heterogeneous, homogeneous, and biocatalysis. Emphasizing transformative methods and technologies, the journal aims to advance understanding, introduce novel catalysts, and connect fundamental insights to real-world applications for societal benefit.