Christopher Hossack, Christopher Cahill and Claire Besson
{"title":"Utility of all-pyrazole heteroscorpionates in f-element chemistry","authors":"Christopher Hossack, Christopher Cahill and Claire Besson","doi":"10.1039/D3DT02737F","DOIUrl":null,"url":null,"abstract":"<p >Since their discovery in 1966, scorpionate ligands have been utilized to make coordination compounds for a variety of applications such as: studying organometallic reactions, biomimetic complexes, light-emitting materials and single-ion magnets. The recent development of a solvent-free pyrazole substitution chemistry has yielded the quantitative synthesis of asymmetrically functionalized all-pyrazole heteroscorpionate ligands. In this frontier article, we highlight the utility of all-pyrazole heteroscorpionates, specifically, nitro-trispyrazolylborates, in f-element chemistry. They offer great versatility in coordinating ability, donor strength, steric bulk and even optical charge transfer properties, all of which can be used to tune the properties of resultant complexes with metal ions. We show how they can impart structural diversity, sensitize Ln<small><sup>3+</sup></small> luminescence and engender magnetic anisotropy and slow magnetic relaxation in the ion they coordinate. Additionally, we comment on the future of functionalized trispyrazolyl scorpionates, which includes enabling post-synthetic modifications of f-element complexes and becoming a platform to study the electronic properties of low oxidation state actinides.</p>","PeriodicalId":71,"journal":{"name":"Dalton Transactions","volume":" 47","pages":" 17656-17665"},"PeriodicalIF":3.5000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dalton Transactions","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/dt/d3dt02737f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Since their discovery in 1966, scorpionate ligands have been utilized to make coordination compounds for a variety of applications such as: studying organometallic reactions, biomimetic complexes, light-emitting materials and single-ion magnets. The recent development of a solvent-free pyrazole substitution chemistry has yielded the quantitative synthesis of asymmetrically functionalized all-pyrazole heteroscorpionate ligands. In this frontier article, we highlight the utility of all-pyrazole heteroscorpionates, specifically, nitro-trispyrazolylborates, in f-element chemistry. They offer great versatility in coordinating ability, donor strength, steric bulk and even optical charge transfer properties, all of which can be used to tune the properties of resultant complexes with metal ions. We show how they can impart structural diversity, sensitize Ln3+ luminescence and engender magnetic anisotropy and slow magnetic relaxation in the ion they coordinate. Additionally, we comment on the future of functionalized trispyrazolyl scorpionates, which includes enabling post-synthetic modifications of f-element complexes and becoming a platform to study the electronic properties of low oxidation state actinides.
期刊介绍:
Dalton Transactions is a journal for all areas of inorganic chemistry, which encompasses the organometallic, bioinorganic and materials chemistry of the elements, with applications including synthesis, catalysis, energy conversion/storage, electrical devices and medicine. Dalton Transactions welcomes high-quality, original submissions in all of these areas and more, where the advancement of knowledge in inorganic chemistry is significant.