Proof-of-concept solution to create an interoperable timeline of healthcare data.

IF 4.1 Q1 HEALTH CARE SCIENCES & SERVICES BMJ Health & Care Informatics Pub Date : 2023-11-01 DOI:10.1136/bmjhci-2023-100754
Sapna Trivedi, Stephen Hall, Fiona Inglis, Afzal Chaudhry
{"title":"Proof-of-concept solution to create an interoperable timeline of healthcare data.","authors":"Sapna Trivedi, Stephen Hall, Fiona Inglis, Afzal Chaudhry","doi":"10.1136/bmjhci-2023-100754","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To overcome the barriers of interoperability by sharing simulated patient data from different electronic health records systems and presenting them in an intuitive timeline of events.</p><p><strong>Methods: </strong>The 'Patient Story' software comprising database and blockchain, PS Timeline Windows interface, PS Timeline Web interface and network relays on Azure cloud was customised for Epic and Lorenzo electonic patient record (EPR) systems used at different hospitals, using site-specific adapters.</p><p><strong>Results: </strong>Each site could view their own clinical documents and view each other's site specific, fully coded test sets of (Care Connect) medications, conditions and allergies, in an aggregated single view.</p><p><strong>Discussion: </strong>This work has shown that clinical data from different EPR systems can be successfully integrated and visualised on a single timeline, accessible by clinicians and patients.</p><p><strong>Conclusion: </strong>The Patient Story system combined the timeline visualisation with successful interoperability across healthcare settings, as well giving patients the ability to directly interact with their timeline.</p>","PeriodicalId":9050,"journal":{"name":"BMJ Health & Care Informatics","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10693683/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMJ Health & Care Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1136/bmjhci-2023-100754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: To overcome the barriers of interoperability by sharing simulated patient data from different electronic health records systems and presenting them in an intuitive timeline of events.

Methods: The 'Patient Story' software comprising database and blockchain, PS Timeline Windows interface, PS Timeline Web interface and network relays on Azure cloud was customised for Epic and Lorenzo electonic patient record (EPR) systems used at different hospitals, using site-specific adapters.

Results: Each site could view their own clinical documents and view each other's site specific, fully coded test sets of (Care Connect) medications, conditions and allergies, in an aggregated single view.

Discussion: This work has shown that clinical data from different EPR systems can be successfully integrated and visualised on a single timeline, accessible by clinicians and patients.

Conclusion: The Patient Story system combined the timeline visualisation with successful interoperability across healthcare settings, as well giving patients the ability to directly interact with their timeline.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
概念验证解决方案,用于创建可互操作的医疗保健数据时间表。
目标:通过共享来自不同电子健康记录系统的模拟患者数据并将其呈现在直观的事件时间表中,克服互操作性障碍。方法:“患者故事”软件包括数据库和区块链、PS Timeline Windows界面、PS Timeliner Web界面和Azure云上的网络中继,是为不同医院使用的Epic和Lorenzo电子病历(EPR)系统定制的,使用特定站点的适配器。结果:每个网站都可以查看自己的临床文档,并在一个汇总的单一视图中查看彼此网站特定的、完整编码的(Care Connect)药物、病情和过敏测试集。讨论:这项工作表明,来自不同EPR系统的临床数据可以在一个时间线上成功集成和可视化,临床医生和患者都可以访问。结论:患者故事系统将时间线可视化与医疗环境中的成功互操作性相结合,并使患者能够直接与时间线互动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.10
自引率
4.90%
发文量
40
审稿时长
18 weeks
期刊最新文献
Scaling equitable artificial intelligence in healthcare with machine learning operations. Understanding prescribing errors for system optimisation: the technology-related error mechanism classification. Detection of hypertension from pharyngeal images using deep learning algorithm in primary care settings in Japan. PubMed captures more fine-grained bibliographic data on scientific commentary than Web of Science: a comparative analysis. Method to apply temporal graph analysis on electronic patient record data to explore healthcare professional-patient interaction intensity: a cohort study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1