Molecular Evolution of Malacostracan Short Wavelength Sensitive Opsins.

IF 2.1 3区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Molecular Evolution Pub Date : 2023-12-01 Epub Date: 2023-11-09 DOI:10.1007/s00239-023-10137-w
Sitara Palecanda, Elizabeth Madrid, Megan L Porter
{"title":"Molecular Evolution of Malacostracan Short Wavelength Sensitive Opsins.","authors":"Sitara Palecanda, Elizabeth Madrid, Megan L Porter","doi":"10.1007/s00239-023-10137-w","DOIUrl":null,"url":null,"abstract":"<p><p>Investigations of the molecular mechanisms behind detection of short, and particularly ultraviolet, wavelengths in arthropods have relied heavily on studies from insects due to the relative ease of heterologous expression of modified opsin proteins in model organisms like Drosophila. However, species outside of the Insecta can provide information on mechanisms for spectral tuning as well as the evolutionary history of pancrustacean visual pigments. Here we investigate the basis of spectral tuning in malacostracan short wavelength sensitive (SWS) opsins using phylogenetic comparative methods. Tuning sites that may be responsible for the difference between ultraviolet (UV) and violet visual pigment absorbance in the Malacostraca are identified, and the idea that an amino acid polymorphism at a single site is responsible for this shift is shown to be unlikely. Instead, we suggest that this change in absorbance is accomplished through multiple amino acid substitutions. On the basis of our findings, we conducted further surveys to identify spectral tuning mechanisms in the order Stomatopoda where duplication of UV opsins has occurred. Ancestral state reconstructions of stomatopod opsins from two main clades provide insight into the amino acid changes that lead to differing absorption by the visual pigments they form, and likely contribute the basis for the wide array of UV spectral sensitivities found in this order.</p>","PeriodicalId":16366,"journal":{"name":"Journal of Molecular Evolution","volume":" ","pages":"806-818"},"PeriodicalIF":2.1000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00239-023-10137-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/9 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Investigations of the molecular mechanisms behind detection of short, and particularly ultraviolet, wavelengths in arthropods have relied heavily on studies from insects due to the relative ease of heterologous expression of modified opsin proteins in model organisms like Drosophila. However, species outside of the Insecta can provide information on mechanisms for spectral tuning as well as the evolutionary history of pancrustacean visual pigments. Here we investigate the basis of spectral tuning in malacostracan short wavelength sensitive (SWS) opsins using phylogenetic comparative methods. Tuning sites that may be responsible for the difference between ultraviolet (UV) and violet visual pigment absorbance in the Malacostraca are identified, and the idea that an amino acid polymorphism at a single site is responsible for this shift is shown to be unlikely. Instead, we suggest that this change in absorbance is accomplished through multiple amino acid substitutions. On the basis of our findings, we conducted further surveys to identify spectral tuning mechanisms in the order Stomatopoda where duplication of UV opsins has occurred. Ancestral state reconstructions of stomatopod opsins from two main clades provide insight into the amino acid changes that lead to differing absorption by the visual pigments they form, and likely contribute the basis for the wide array of UV spectral sensitivities found in this order.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
马氏体短波长敏感Opsins的分子进化。
由于在果蝇等模式生物中修饰视蛋白蛋白的异源表达相对容易,因此对节肢动物中短波长,特别是紫外线波长检测背后的分子机制的研究在很大程度上依赖于昆虫的研究。然而,昆虫纲以外的物种可以提供有关光谱调节机制以及泛壳目视觉色素进化史的信息。在这里,我们使用系统发育比较方法研究了软体动物短波长敏感视蛋白(SWS)光谱调谐的基础。已经确定了可能导致马六甲虫紫外线(UV)和紫色视觉色素吸收率差异的调节位点,而单一位点的氨基酸多态性导致这种变化的想法被证明是不可能的。相反,我们认为这种吸光度的变化是通过多种氨基酸取代来实现的。在我们的发现的基础上,我们进行了进一步的调查,以确定口腔目中发生紫外线视蛋白复制的光谱调节机制。来自两个主要分支的口足类视蛋白的祖先状态重建提供了对氨基酸变化的深入了解,这些变化导致它们形成的视觉色素的不同吸收,并可能为以这种顺序发现的广泛的紫外线光谱敏感性奠定基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Molecular Evolution
Journal of Molecular Evolution 生物-进化生物学
CiteScore
5.50
自引率
2.60%
发文量
36
审稿时长
3 months
期刊介绍: Journal of Molecular Evolution covers experimental, computational, and theoretical work aimed at deciphering features of molecular evolution and the processes bearing on these features, from the initial formation of macromolecular systems through their evolution at the molecular level, the co-evolution of their functions in cellular and organismal systems, and their influence on organismal adaptation, speciation, and ecology. Topics addressed include the evolution of informational macromolecules and their relation to more complex levels of biological organization, including populations and taxa, as well as the molecular basis for the evolution of ecological interactions of species and the use of molecular data to infer fundamental processes in evolutionary ecology. This coverage accommodates such subfields as new genome sequences, comparative structural and functional genomics, population genetics, the molecular evolution of development, the evolution of gene regulation and gene interaction networks, and in vitro evolution of DNA and RNA, molecular evolutionary ecology, and the development of methods and theory that enable molecular evolutionary inference, including but not limited to, phylogenetic methods.
期刊最新文献
Prebiotic Peptide Synthesis: How Did Longest Peptide Appear? An Ultimate Question for Functional A-to-I mRNA Editing: Why Not a Genomic G? Detection of an Alphacoronavirus in a Brazilian Bat (Molossus sp.). Selection Pressure Regulates the Evolution-Structure-Function Paradigm of Monocyte Chemoattractant Protein Family. Evolutionary Nonindependence Between Human piRNAs and Their Potential Target Sites in Protein-Coding Genes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1