S J Baltrusch, F Krause, A W de Vries, M P de Looze
{"title":"Arm-support exoskeleton reduces shoulder muscle activity in ceiling construction.","authors":"S J Baltrusch, F Krause, A W de Vries, M P de Looze","doi":"10.1080/00140139.2023.2280443","DOIUrl":null,"url":null,"abstract":"<p><p>The objective of this study was to assess the efficacy and user's impression of an arm-support exoskeleton in complex and realistic ceiling construction tasks. 11 construction workers performed 9 tasks. We determined objective and subjective efficacy of the exoskeleton by measuring shoulder muscle activity and perceived exertion. User's impression was assessed by questionnaires on expected support, perceived support, perceived hindrance and future intention to use the exoskeleton. Wearing the exoskeleton yielded persistent reductions in shoulder muscle activity of up to 58% and decreased perceived exertion. Participants reported limited perceived hindrance by the exoskeleton, as also indicated by no increase in antagonistic muscle activity. The findings demonstrate the high potential of an arm-support exoskeleton for unloading the shoulder muscles when used in the dynamic and versatile working environment of a ceiling construction worker, which is in line with the consistent intention of the workers to use the exoskeleton in the future.<b>Practitioner Summary:</b> The majority of research focuses on the effect of using an arm-support exoskeleton during isolated postures and prescribed movements. We investigated the efficacy of an exoskeleton during a complex and realistic work, namely ceiling construction. Shoulder muscle activity was lower in almost all tasks when wearing the exoskeleton.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/00140139.2023.2280443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of this study was to assess the efficacy and user's impression of an arm-support exoskeleton in complex and realistic ceiling construction tasks. 11 construction workers performed 9 tasks. We determined objective and subjective efficacy of the exoskeleton by measuring shoulder muscle activity and perceived exertion. User's impression was assessed by questionnaires on expected support, perceived support, perceived hindrance and future intention to use the exoskeleton. Wearing the exoskeleton yielded persistent reductions in shoulder muscle activity of up to 58% and decreased perceived exertion. Participants reported limited perceived hindrance by the exoskeleton, as also indicated by no increase in antagonistic muscle activity. The findings demonstrate the high potential of an arm-support exoskeleton for unloading the shoulder muscles when used in the dynamic and versatile working environment of a ceiling construction worker, which is in line with the consistent intention of the workers to use the exoskeleton in the future.Practitioner Summary: The majority of research focuses on the effect of using an arm-support exoskeleton during isolated postures and prescribed movements. We investigated the efficacy of an exoskeleton during a complex and realistic work, namely ceiling construction. Shoulder muscle activity was lower in almost all tasks when wearing the exoskeleton.