Rapid large-capacity storage of renewable solar-/electro-thermal energy within phase-change materials by bioinspired multifunctional meshes

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Matter Pub Date : 2023-11-01 DOI:10.1016/j.matt.2023.09.011
Xiaoxiang Li , Yizhe Liu , Yangzhe Xu , Ting Hu , Benwei Fu , Chengyi Song , Wen Shang , Peng Tao , Tao Deng
{"title":"Rapid large-capacity storage of renewable solar-/electro-thermal energy within phase-change materials by bioinspired multifunctional meshes","authors":"Xiaoxiang Li ,&nbsp;Yizhe Liu ,&nbsp;Yangzhe Xu ,&nbsp;Ting Hu ,&nbsp;Benwei Fu ,&nbsp;Chengyi Song ,&nbsp;Wen Shang ,&nbsp;Peng Tao ,&nbsp;Tao Deng","doi":"10.1016/j.matt.2023.09.011","DOIUrl":null,"url":null,"abstract":"<div><p><span>Storing solar-/electro-thermal energy within organic or inorganic phase-change materials (PCMs) is an attractive way to provide stable renewable heating. Herein, we report a facile dynamic charging strategy for rapid harvesting of solar-/electro-thermal energy within PCMs while retaining ∼100% latent heat storage capacity. A bioinspired multifunctional Fe-Cr-Al mesh with high solar absorptance (∼94%), high electrical conductivity<span> (6,622 S/cm), strong corrosion resistance, and high-temperature stability was used as the movable solar-/electro-thermal charger, which can dynamically track the receding solid/liquid interface. Such dynamic charging has demonstrated rapid thermal response (&lt;1 min) and steady fast-charging rates (≥1.1 mm/min), can be driven by low voltage (≤1 V) and low-flux solar illumination (≤500 mW/cm</span></span><sup>2</sup>), and has achieved a high phase-change solar-thermal (∼90.1%) and electro-thermal (∼86.1%) storage efficiency. The dynamic charging approach is a promising route to efficiently harvest renewable thermal energy from intermittent solar and wind power.</p></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"6 11","pages":"Pages 4050-4065"},"PeriodicalIF":17.3000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238523004678","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Storing solar-/electro-thermal energy within organic or inorganic phase-change materials (PCMs) is an attractive way to provide stable renewable heating. Herein, we report a facile dynamic charging strategy for rapid harvesting of solar-/electro-thermal energy within PCMs while retaining ∼100% latent heat storage capacity. A bioinspired multifunctional Fe-Cr-Al mesh with high solar absorptance (∼94%), high electrical conductivity (6,622 S/cm), strong corrosion resistance, and high-temperature stability was used as the movable solar-/electro-thermal charger, which can dynamically track the receding solid/liquid interface. Such dynamic charging has demonstrated rapid thermal response (<1 min) and steady fast-charging rates (≥1.1 mm/min), can be driven by low voltage (≤1 V) and low-flux solar illumination (≤500 mW/cm2), and has achieved a high phase-change solar-thermal (∼90.1%) and electro-thermal (∼86.1%) storage efficiency. The dynamic charging approach is a promising route to efficiently harvest renewable thermal energy from intermittent solar and wind power.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用仿生多功能网格在相变材料内实现可再生太阳能/电热的快速大容量存储
将太阳能/电热能储存在有机或无机相变材料(PCM)中是提供稳定可再生加热的一种有吸引力的方式。在此,我们报告了一种简单的动态充电策略,用于在PCM内快速收集太阳能/电热能,同时保持~100%的潜热存储容量。一种具有高太阳能吸收率(~94%)、高电导率(6622 S/cm)、强耐腐蚀性和高温稳定性的仿生多功能Fe-Cr-Al网被用作可移动太阳能/电热充电器,该充电器可以动态跟踪后退的固体/液体界面。这种动态充电已经证明了快速的热响应(<;1分钟)和稳定的快速充电速率(≥1.1 mm/min),可以由低电压(≤1 V)和低通量太阳能照明(≤500 mW/cm2)驱动,并实现了高的相变太阳能热(~90.1%)和电热(~86.1%)存储效率。动态充电方法是一种从间歇太阳能和风能中有效获取可再生热能的有前途的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
期刊最新文献
A ferroelectric living interface for fine-tuned exosome secretion toward physiology-mimetic neurovascular remodeling Biomimetic artificial neuromuscular fiber bundles with built-in adaptive feedback Massively multiplexed optical recording with polychromatic DNA frameworks Polyfunctional eutectogels with multiple hydrogen-bond-shielded amorphous networks for soft ionotronics Brilliant colorful daytime radiative cooling coating mimicking scarab beetle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1