{"title":"Wet removal of elemental mercury by acid-assisted electrochemical oxidation method","authors":"Qian-qian ZHANG, An-chao ZHANG, Fan-mao MENG, Yan-wen LIU, Zhi-jun SUN, Hai-xia LI, Hai-kun ZHENG","doi":"10.1016/S1872-5813(23)60371-8","DOIUrl":null,"url":null,"abstract":"<div><p>As a global pollutant, mercury emission is increasingly restricted in recent years. It is urgent to explore a new and efficient mercury removal technology for coal-fired power plants. A new acid-assisted electrochemical oxidation (AEO) technique for mercury removal was proposed using platinum plate as cathode and fluorine-doped tin dioxide (FTO) glass as anode. The effects of acid type, acid concentration, applied direct current (DC) voltage, electrolyte type, SO<sub>2</sub>, NO and O<sub>2</sub> on the Hg<sup>0</sup> removal efficiency were carried out. The results indicated that the mercury removal efficiency increased with the increase of DC voltage and nitric acid concentration. When the concentration of nitric acid increased to 0.15 mol/L, the mercury removal efficiency remained unchanged. SO<sub>2</sub> and NO inhibited the removal of Hg<sup>0</sup> in AEO system, but the inhibition was reversible. Compared with the mercury removal efficiency under single experimental conditions, the mercury removal efficiency of electrochemical oxidation can reach 96% under the experimental conditions of 0.1 mol/L nitric acid and 4V DC voltage, suggesting that the synergistic effect of nitric acid and DC voltage plays a key role. According to the experimental results, the mechanism of Hg<sup>0</sup> removal in AEO system was analyzed. At the anode, Hg<sup>0</sup> was oxidized by hydroxyl radical (<sup>.</sup>OH) generated by the oxidation reaction on the anode surface. At the cathode, dissolved oxygen or O<sub>2</sub> adsorbed on the surface of Pt is reduced to form anionic superoxide radicals (<sup>.</sup>O<sup>−</sup><sub>2</sub>). Moreover, parts of <sup>.</sup>O<sup>−</sup><sub>2</sub> would produce <sup>.</sup>OH with the aid of electron at acidic condition. Free radicals capture experiments showed that <sup>.</sup>O<sup>−</sup><sub>2</sub> and <sup>.</sup>OH were the main active substances for the removal of Hg<sup>0</sup> by acid-assisted electrochemical method. The research is helpful for the development of effective electrochemical techniques for industrial mercury removal and recycling of industrial acid waste.</p></div>","PeriodicalId":15956,"journal":{"name":"燃料化学学报","volume":"51 10","pages":"Pages 1496-1505"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"燃料化学学报","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872581323603718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0
Abstract
As a global pollutant, mercury emission is increasingly restricted in recent years. It is urgent to explore a new and efficient mercury removal technology for coal-fired power plants. A new acid-assisted electrochemical oxidation (AEO) technique for mercury removal was proposed using platinum plate as cathode and fluorine-doped tin dioxide (FTO) glass as anode. The effects of acid type, acid concentration, applied direct current (DC) voltage, electrolyte type, SO2, NO and O2 on the Hg0 removal efficiency were carried out. The results indicated that the mercury removal efficiency increased with the increase of DC voltage and nitric acid concentration. When the concentration of nitric acid increased to 0.15 mol/L, the mercury removal efficiency remained unchanged. SO2 and NO inhibited the removal of Hg0 in AEO system, but the inhibition was reversible. Compared with the mercury removal efficiency under single experimental conditions, the mercury removal efficiency of electrochemical oxidation can reach 96% under the experimental conditions of 0.1 mol/L nitric acid and 4V DC voltage, suggesting that the synergistic effect of nitric acid and DC voltage plays a key role. According to the experimental results, the mechanism of Hg0 removal in AEO system was analyzed. At the anode, Hg0 was oxidized by hydroxyl radical (.OH) generated by the oxidation reaction on the anode surface. At the cathode, dissolved oxygen or O2 adsorbed on the surface of Pt is reduced to form anionic superoxide radicals (.O−2). Moreover, parts of .O−2 would produce .OH with the aid of electron at acidic condition. Free radicals capture experiments showed that .O−2 and .OH were the main active substances for the removal of Hg0 by acid-assisted electrochemical method. The research is helpful for the development of effective electrochemical techniques for industrial mercury removal and recycling of industrial acid waste.
期刊介绍:
Journal of Fuel Chemistry and Technology (Ranliao Huaxue Xuebao) is a Chinese Academy of Sciences(CAS) journal started in 1956, sponsored by the Chinese Chemical Society and the Institute of Coal Chemistry, Chinese Academy of Sciences(CAS). The journal is published bimonthly by Science Press in China and widely distributed in about 20 countries. Journal of Fuel Chemistry and Technology publishes reports of both basic and applied research in the chemistry and chemical engineering of many energy sources, including that involved in the nature, processing and utilization of coal, petroleum, oil shale, natural gas, biomass and synfuels, as well as related subjects of increasing interest such as C1 chemistry, pollutions control and new catalytic materials. Types of publications include original research articles, short communications, research notes and reviews. Both domestic and international contributors are welcome. Manuscripts written in Chinese or English will be accepted. Additional English titles, abstracts and key words should be included in Chinese manuscripts. All manuscripts are subject to critical review by the editorial committee, which is composed of about 10 foreign and 50 Chinese experts in fuel science. Journal of Fuel Chemistry and Technology has been a source of primary research work in fuel chemistry as a Chinese core scientific periodical.