{"title":"Consumer credit-risk models via machine-learning algorithms","authors":"Amir E. Khandani, Adlar J. Kim, Andrew W. Lo","doi":"10.1016/j.jbankfin.2010.06.001","DOIUrl":null,"url":null,"abstract":"<div><p><span>We apply machine-learning techniques to construct nonlinear nonparametric forecasting models of consumer credit risk. By combining customer transactions and credit bureau data from January 2005 to April 2009 for a sample of a major commercial bank’s customers, we are able to construct out-of-sample forecasts that significantly improve the classification rates of credit-card-holder delinquencies and defaults, with linear regression </span><em>R</em><sup>2</sup>’s of forecasted/realized delinquencies of 85%. Using conservative assumptions for the costs and benefits of cutting credit lines based on machine-learning forecasts, we estimate the cost savings to range from 6% to 25% of total losses. Moreover, the time-series patterns of estimated delinquency rates from this model over the course of the recent financial crisis suggest that aggregated consumer credit-risk analytics may have important applications in forecasting systemic risk.</p></div>","PeriodicalId":48460,"journal":{"name":"Journal of Banking & Finance","volume":"34 11","pages":"Pages 2767-2787"},"PeriodicalIF":3.6000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jbankfin.2010.06.001","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Banking & Finance","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378426610002372","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0
Abstract
We apply machine-learning techniques to construct nonlinear nonparametric forecasting models of consumer credit risk. By combining customer transactions and credit bureau data from January 2005 to April 2009 for a sample of a major commercial bank’s customers, we are able to construct out-of-sample forecasts that significantly improve the classification rates of credit-card-holder delinquencies and defaults, with linear regression R2’s of forecasted/realized delinquencies of 85%. Using conservative assumptions for the costs and benefits of cutting credit lines based on machine-learning forecasts, we estimate the cost savings to range from 6% to 25% of total losses. Moreover, the time-series patterns of estimated delinquency rates from this model over the course of the recent financial crisis suggest that aggregated consumer credit-risk analytics may have important applications in forecasting systemic risk.
期刊介绍:
The Journal of Banking and Finance (JBF) publishes theoretical and empirical research papers spanning all the major research fields in finance and banking. The aim of the Journal of Banking and Finance is to provide an outlet for the increasing flow of scholarly research concerning financial institutions and the money and capital markets within which they function. The Journal''s emphasis is on theoretical developments and their implementation, empirical, applied, and policy-oriented research in banking and other domestic and international financial institutions and markets. The Journal''s purpose is to improve communications between, and within, the academic and other research communities and policymakers and operational decision makers at financial institutions - private and public, national and international, and their regulators. The Journal is one of the largest Finance journals, with approximately 1500 new submissions per year, mainly in the following areas: Asset Management; Asset Pricing; Banking (Efficiency, Regulation, Risk Management, Solvency); Behavioural Finance; Capital Structure; Corporate Finance; Corporate Governance; Derivative Pricing and Hedging; Distribution Forecasting with Financial Applications; Entrepreneurial Finance; Empirical Finance; Financial Economics; Financial Markets (Alternative, Bonds, Currency, Commodity, Derivatives, Equity, Energy, Real Estate); FinTech; Fund Management; General Equilibrium Models; High-Frequency Trading; Intermediation; International Finance; Hedge Funds; Investments; Liquidity; Market Efficiency; Market Microstructure; Mergers and Acquisitions; Networks; Performance Analysis; Political Risk; Portfolio Optimization; Regulation of Financial Markets and Institutions; Risk Management and Analysis; Systemic Risk; Term Structure Models; Venture Capital.