Jacob J. Golan , Daniele Lagomarsino Oneto , Shunping Ding , Richard Kessenich , Melvin Sandler , Tomás A. Rush , Daniel Levitis , Amanda Gevens , Agnese Seminara , Anne Pringle
{"title":"Differences in spore size and atmospheric survival shape stark contrasts in the dispersal dynamics of two closely related fungal pathogens","authors":"Jacob J. Golan , Daniele Lagomarsino Oneto , Shunping Ding , Richard Kessenich , Melvin Sandler , Tomás A. Rush , Daniel Levitis , Amanda Gevens , Agnese Seminara , Anne Pringle","doi":"10.1016/j.funeco.2023.101298","DOIUrl":null,"url":null,"abstract":"<div><p>A frequently ignored but critical aspect of microbial dispersal is survival in the atmosphere. We exposed spores of two closely related, morphologically dissimilar, and economically important fungal pathogens to typical atmospheric environments and modeled their movement in the troposphere. <em>Alternaria solani</em> conidia are nearly 10 times larger than <em>A. alternata</em> conidia, but in our experiments, most died within 24 h, while over half of <em>A. alternata</em> conidia remained viable on day 12. Next, we modeled the movement of spores across North America. We predict 99% of the larger <em>A. solani</em> conidia settle within 24 h, with a maximum dispersal distance of 100 km. By contrast, most <em>A. alternata</em> conidia remain airborne for more than 12 days, and dispersal over long distances(2000 km) is likely. Counterintuitively, the larger <em>A. solani</em> conidia survive poorly, as compared to smaller <em>A. alternata</em> conidia, but also land sooner and move over shorter distances.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"66 ","pages":"Article 101298"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Ecology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1754504823000752","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A frequently ignored but critical aspect of microbial dispersal is survival in the atmosphere. We exposed spores of two closely related, morphologically dissimilar, and economically important fungal pathogens to typical atmospheric environments and modeled their movement in the troposphere. Alternaria solani conidia are nearly 10 times larger than A. alternata conidia, but in our experiments, most died within 24 h, while over half of A. alternata conidia remained viable on day 12. Next, we modeled the movement of spores across North America. We predict 99% of the larger A. solani conidia settle within 24 h, with a maximum dispersal distance of 100 km. By contrast, most A. alternata conidia remain airborne for more than 12 days, and dispersal over long distances(2000 km) is likely. Counterintuitively, the larger A. solani conidia survive poorly, as compared to smaller A. alternata conidia, but also land sooner and move over shorter distances.
期刊介绍:
Fungal Ecology publishes investigations into all aspects of fungal ecology, including the following (not exclusive): population dynamics; adaptation; evolution; role in ecosystem functioning, nutrient cycling, decomposition, carbon allocation; ecophysiology; intra- and inter-specific mycelial interactions, fungus-plant (pathogens, mycorrhizas, lichens, endophytes), fungus-invertebrate and fungus-microbe interaction; genomics and (evolutionary) genetics; conservation and biodiversity; remote sensing; bioremediation and biodegradation; quantitative and computational aspects - modelling, indicators, complexity, informatics. The usual prerequisites for publication will be originality, clarity, and significance as relevant to a better understanding of the ecology of fungi.