Incipient wetness impregnation to prepare bismuth-modified all-silica beta zeolite for efficient radioactive iodine capture

Zhenjiang Tian , Tien-Shee Chee , Ruixue Meng , Yuxun Hao , Xiangyu Zhou , Bin Ma , Lin Zhu , Tao Duan , Chengliang Xiao
{"title":"Incipient wetness impregnation to prepare bismuth-modified all-silica beta zeolite for efficient radioactive iodine capture","authors":"Zhenjiang Tian ,&nbsp;Tien-Shee Chee ,&nbsp;Ruixue Meng ,&nbsp;Yuxun Hao ,&nbsp;Xiangyu Zhou ,&nbsp;Bin Ma ,&nbsp;Lin Zhu ,&nbsp;Tao Duan ,&nbsp;Chengliang Xiao","doi":"10.1016/j.efmat.2022.05.006","DOIUrl":null,"url":null,"abstract":"<div><p>The economical and effective capture of radioactive iodine has always been an important field of research in the reprocessing of spent fuel. In this work, we successfully prepared a novel bismuth-modified all-silica beta zeolite material (Bi@Si-BEA) though a modified incipient wetness impregnation method. A series of iodine sorption and desorption experiments and characterization methods (PXRD, SEM, TEM, TG, XPS, FTIR, <sup>29</sup>Si NMR, Raman, PDF, and DFT calculation) were performed to reveal the structural characteristics and the mechanism of iodine capture of Bi@Si-BEA. The results showed that the sorption mechanism generally involved the preferential enrichment of iodine molecules in the 12-ring channels of the Si-BEA, for which the adsorption energy was −0.23 ​eV. The enriched iodine molecules subsequently reacted with the active bismuth sites (Bi<sup>0</sup> and β-Bi<sub>2</sub>O<sub>3</sub>) on the surface of Si-BEA to form bismuth iodine compounds (BiI<sub>3</sub> and BiOI), thereby achieving immobilization of iodine through strong chemical interactions. Through a combination of physical and chemical effects, Bi@Si-BEA could reach a sorption capacity of 600 ​mg/g, of which the chemisorption accounts for approximately 350 ​mg/g, in approximately 2 ​h. In addition, we explored the effects of different loadings of bismuth and experimental temperatures on the iodine sorption performance and scaled up the preparation of Bi@Si-BEA.</p></div>","PeriodicalId":100481,"journal":{"name":"Environmental Functional Materials","volume":"1 1","pages":"Pages 92-104"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773058122000102/pdfft?md5=94fe4d2aa1df9080439505d64bc79588&pid=1-s2.0-S2773058122000102-main.pdf","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Functional Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773058122000102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

The economical and effective capture of radioactive iodine has always been an important field of research in the reprocessing of spent fuel. In this work, we successfully prepared a novel bismuth-modified all-silica beta zeolite material (Bi@Si-BEA) though a modified incipient wetness impregnation method. A series of iodine sorption and desorption experiments and characterization methods (PXRD, SEM, TEM, TG, XPS, FTIR, 29Si NMR, Raman, PDF, and DFT calculation) were performed to reveal the structural characteristics and the mechanism of iodine capture of Bi@Si-BEA. The results showed that the sorption mechanism generally involved the preferential enrichment of iodine molecules in the 12-ring channels of the Si-BEA, for which the adsorption energy was −0.23 ​eV. The enriched iodine molecules subsequently reacted with the active bismuth sites (Bi0 and β-Bi2O3) on the surface of Si-BEA to form bismuth iodine compounds (BiI3 and BiOI), thereby achieving immobilization of iodine through strong chemical interactions. Through a combination of physical and chemical effects, Bi@Si-BEA could reach a sorption capacity of 600 ​mg/g, of which the chemisorption accounts for approximately 350 ​mg/g, in approximately 2 ​h. In addition, we explored the effects of different loadings of bismuth and experimental temperatures on the iodine sorption performance and scaled up the preparation of Bi@Si-BEA.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
初始润湿浸渍制备铋改性全硅β沸石用于有效捕获放射性碘
经济有效地捕获放射性碘一直是乏燃料后处理中的一个重要研究领域。在这项工作中,我们成功地制备了一种新型的铋改性全硅β沸石材料(Bi@Si-BEA)通过改进的初湿浸渍方法。通过PXRD、SEM、TEM、TG、XPS、FTIR、29Si-NMR、Raman、PDF和DFT计算等一系列碘吸附和解吸实验和表征方法,揭示了碘捕获的结构特征和机理Bi@Si-BEA.结果表明,吸附机理通常涉及碘分子在硅BEA的12个环通道中的优先富集,其吸附能为-0.23​富集的碘分子随后与Si BEA表面的活性铋位点(Bi0和β-Bi2O3)反应,形成铋-碘化合物(BiI3和BiOI),从而通过强化学相互作用实现碘的固定化。通过物理和化学效应的组合,Bi@Si-BEA可以达到600的吸附能力​mg/g,其中化学吸附约占350​mg/g,约2​h.此外,我们还探讨了不同铋负载量和实验温度对碘吸附性能的影响,并按比例制备了Bi@Si-BEA.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial Board Advance of self-cleaning separation membranes for oil-containing wastewater treatment Modified Titanium dioxide-based photocatalysts for water treatment: Mini review Progress of CO2 fixation using cycloaddition reaction The application of diatomic catalysts in advanced oxidation Fenton-like water treatment technology:A mini review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1