Changwei Chen , Mohammadreza Kosari , Meizan Jing , Chi He
{"title":"Microwave-assisted synthesis of bimetallic NiCo-MOF-74 with enhanced open metal site for efficient CO2 capture","authors":"Changwei Chen , Mohammadreza Kosari , Meizan Jing , Chi He","doi":"10.1016/j.efmat.2023.01.002","DOIUrl":null,"url":null,"abstract":"<div><p>Metal–organic frameworks (MOFs) containing two different inorganic metal nodes (known as bimetallic MOFs) could exhibit enhanced CO<sub>2</sub> adsorption compared to their monometallic counterparts. Herein, a series of bimetallic NiCo-MOF-74 synthesized by microwave-assisted method were investigated for CO<sub>2</sub> adsorption. It was revealed that narrow micropore channel with open metal site (OMS) of the bimetallic NiCo-MOF-74 influence CO<sub>2</sub> binding affinity and CO<sub>2</sub>/N<sub>2</sub> adsorption. The CO<sub>2</sub> uptake of Ni<sub>1</sub>Co<sub>1</sub>-MOF-74 at 0 °C and 1 bar (100 kPa) was 8.30 mmol g<sup>−1</sup> which is higher than those of Ni-MOF-74 (3.99 mmol g<sup>−1</sup>), Ni<sub>6</sub>Co<sub>1</sub>-MOF-74 (3.62 mmol g<sup>−1</sup>), Ni<sub>1</sub>Co<sub>6</sub>-MOF-74 (6.40 mmol g<sup>−1</sup>) and Co-MOF-74 (5.03 mmol g<sup>−1</sup>). While this could be related to the high specific surface area of Ni<sub>1</sub>Co<sub>1</sub>-MOF-74, Ni<sub>1</sub>CO<sub>2</sub>-MOF-74 with relatively low specific surface areas still shows good CO<sub>2</sub> adsorption capacity up to 5.70 mmol/g, which is higher than those of adsorbents Ni-MOF-74, Ni<sub>6</sub>Co<sub>1</sub>-MOF-74 and Co-MOF-74, indicating that adsorption performance mainly relies on coordinated metals. Ni<sub>1</sub>Co<sub>1</sub>-MOF-74 showed remarkable recyclability performance, ranking selectivity of CO<sub>2</sub>/N<sub>2</sub> reach up to 34, and suitable isosteric heat (31–23 kJ mol<sup>−1</sup>), manifesting a great probability for industrial CO<sub>2</sub> capture. As revealed, incorporated Ni<sup>2+</sup>/Co<sup>2+</sup> nodes within Ni<sub>1</sub>Co<sub>1</sub>-MOF-74, which are acting as active and open sites for CO<sub>2</sub> capture, led to the synergetic effects comprising of micropores as well as dense dual-metal sites.</p></div>","PeriodicalId":100481,"journal":{"name":"Environmental Functional Materials","volume":"1 3","pages":"Pages 253-266"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773058123000029/pdfft?md5=bac7aa3becc70b75236f2fea7b1da8e5&pid=1-s2.0-S2773058123000029-main.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Functional Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773058123000029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Metal–organic frameworks (MOFs) containing two different inorganic metal nodes (known as bimetallic MOFs) could exhibit enhanced CO2 adsorption compared to their monometallic counterparts. Herein, a series of bimetallic NiCo-MOF-74 synthesized by microwave-assisted method were investigated for CO2 adsorption. It was revealed that narrow micropore channel with open metal site (OMS) of the bimetallic NiCo-MOF-74 influence CO2 binding affinity and CO2/N2 adsorption. The CO2 uptake of Ni1Co1-MOF-74 at 0 °C and 1 bar (100 kPa) was 8.30 mmol g−1 which is higher than those of Ni-MOF-74 (3.99 mmol g−1), Ni6Co1-MOF-74 (3.62 mmol g−1), Ni1Co6-MOF-74 (6.40 mmol g−1) and Co-MOF-74 (5.03 mmol g−1). While this could be related to the high specific surface area of Ni1Co1-MOF-74, Ni1CO2-MOF-74 with relatively low specific surface areas still shows good CO2 adsorption capacity up to 5.70 mmol/g, which is higher than those of adsorbents Ni-MOF-74, Ni6Co1-MOF-74 and Co-MOF-74, indicating that adsorption performance mainly relies on coordinated metals. Ni1Co1-MOF-74 showed remarkable recyclability performance, ranking selectivity of CO2/N2 reach up to 34, and suitable isosteric heat (31–23 kJ mol−1), manifesting a great probability for industrial CO2 capture. As revealed, incorporated Ni2+/Co2+ nodes within Ni1Co1-MOF-74, which are acting as active and open sites for CO2 capture, led to the synergetic effects comprising of micropores as well as dense dual-metal sites.