{"title":"Combat situation suppression of multiple UAVs based on spatiotemporal cooperative path planning","authors":"Hu Lei;Yi Guoxing;Nan Yi;Wang Hao","doi":"10.23919/JSEE.2023.000119","DOIUrl":null,"url":null,"abstract":"Aiming at the suppression of enemy air defense (SEAD) task under the complex and complicated combat scenario, the spatiotemporal cooperative path planning methods are studied in this paper. The major research contents include optimal path points generation, path smoothing and cooperative rendezvous. In the path points generation part, the path points availability testing algorithm and the path segments availability testing algorithm are designed, on this foundation, the swarm intelligence-based path point generation algorithm is utilized to generate the optimal path. In the path smoothing part, taking terminal attack angle constraint and maneuverability constraint into consideration, the Dubins curve is introduced to smooth the path segments. In cooperative rendezvous part, we take estimated time of arrival requirement constraint and flight speed range constraint into consideration, the speed control strategy and flight path control strategy are introduced, further, the decoupling scheme of the circling maneuver and detouring maneuver is designed, in this case, the maneuver ways, maneuver point, maneuver times, maneuver path and flight speed are determined. Finally, the simulation experiments are conducted and the acquired results reveal that the time-space cooperation of multiple unmanned aeriel vehicles (UAVs) is effectively realized, in this way, the combat situation suppression against the enemy can be realized in SEAD scenarios.","PeriodicalId":50030,"journal":{"name":"Journal of Systems Engineering and Electronics","volume":"34 5","pages":"1191-1210"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Engineering and Electronics","FirstCategoryId":"1087","ListUrlMain":"https://ieeexplore.ieee.org/document/10308760/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Aiming at the suppression of enemy air defense (SEAD) task under the complex and complicated combat scenario, the spatiotemporal cooperative path planning methods are studied in this paper. The major research contents include optimal path points generation, path smoothing and cooperative rendezvous. In the path points generation part, the path points availability testing algorithm and the path segments availability testing algorithm are designed, on this foundation, the swarm intelligence-based path point generation algorithm is utilized to generate the optimal path. In the path smoothing part, taking terminal attack angle constraint and maneuverability constraint into consideration, the Dubins curve is introduced to smooth the path segments. In cooperative rendezvous part, we take estimated time of arrival requirement constraint and flight speed range constraint into consideration, the speed control strategy and flight path control strategy are introduced, further, the decoupling scheme of the circling maneuver and detouring maneuver is designed, in this case, the maneuver ways, maneuver point, maneuver times, maneuver path and flight speed are determined. Finally, the simulation experiments are conducted and the acquired results reveal that the time-space cooperation of multiple unmanned aeriel vehicles (UAVs) is effectively realized, in this way, the combat situation suppression against the enemy can be realized in SEAD scenarios.