Vincent Hardel, Paul-Antoine Hervieux, Giovanni Manfredi
{"title":"Relaxation to Quantum Equilibrium and the Born Rule in Nelson’s Stochastic Dynamics","authors":"Vincent Hardel, Paul-Antoine Hervieux, Giovanni Manfredi","doi":"10.1007/s10701-023-00730-w","DOIUrl":null,"url":null,"abstract":"<div><p>Nelson’s stochastic quantum mechanics provides an ideal arena to test how the Born rule is established from an initial probability distribution that is not identical to the square modulus of the wavefunction. Here, we investigate numerically this problem for three relevant cases: a double-slit interference setup, a harmonic oscillator, and a quantum particle in a uniform gravitational field. For all cases, Nelson’s stochastic trajectories are initially localized at a definite position, thereby violating the Born rule. For the double slit and harmonic oscillator, typical quantum phenomena, such as interferences, always occur well after the establishment of the Born rule. In contrast, for the case of quantum particles free-falling in the gravity field of the Earth, an interference pattern is observed <i>before</i> the completion of the quantum relaxation. This finding may pave the way to experiments able to discriminate standard quantum mechanics, where the Born rule is always satisfied, from Nelson’s theory, for which an early subquantum dynamics may be present before full quantum relaxation has occurred. Although the mechanism through which a quantum particle might violate the Born rule remains unknown to date, we speculate that this may occur during fundamental processes, such as beta decay or particle-antiparticle pair production.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"53 6","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10701-023-00730-w","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Nelson’s stochastic quantum mechanics provides an ideal arena to test how the Born rule is established from an initial probability distribution that is not identical to the square modulus of the wavefunction. Here, we investigate numerically this problem for three relevant cases: a double-slit interference setup, a harmonic oscillator, and a quantum particle in a uniform gravitational field. For all cases, Nelson’s stochastic trajectories are initially localized at a definite position, thereby violating the Born rule. For the double slit and harmonic oscillator, typical quantum phenomena, such as interferences, always occur well after the establishment of the Born rule. In contrast, for the case of quantum particles free-falling in the gravity field of the Earth, an interference pattern is observed before the completion of the quantum relaxation. This finding may pave the way to experiments able to discriminate standard quantum mechanics, where the Born rule is always satisfied, from Nelson’s theory, for which an early subquantum dynamics may be present before full quantum relaxation has occurred. Although the mechanism through which a quantum particle might violate the Born rule remains unknown to date, we speculate that this may occur during fundamental processes, such as beta decay or particle-antiparticle pair production.
期刊介绍:
The conceptual foundations of physics have been under constant revision from the outset, and remain so today. Discussion of foundational issues has always been a major source of progress in science, on a par with empirical knowledge and mathematics. Examples include the debates on the nature of space and time involving Newton and later Einstein; on the nature of heat and of energy; on irreversibility and probability due to Boltzmann; on the nature of matter and observation measurement during the early days of quantum theory; on the meaning of renormalisation, and many others.
Today, insightful reflection on the conceptual structure utilised in our efforts to understand the physical world is of particular value, given the serious unsolved problems that are likely to demand, once again, modifications of the grammar of our scientific description of the physical world. The quantum properties of gravity, the nature of measurement in quantum mechanics, the primary source of irreversibility, the role of information in physics – all these are examples of questions about which science is still confused and whose solution may well demand more than skilled mathematics and new experiments.
Foundations of Physics is a privileged forum for discussing such foundational issues, open to physicists, cosmologists, philosophers and mathematicians. It is devoted to the conceptual bases of the fundamental theories of physics and cosmology, to their logical, methodological, and philosophical premises.
The journal welcomes papers on issues such as the foundations of special and general relativity, quantum theory, classical and quantum field theory, quantum gravity, unified theories, thermodynamics, statistical mechanics, cosmology, and similar.