Steven R. Cranmer, Rohit Chhiber, Chris R. Gilly, Iver H. Cairns, Robin C. Colaninno, David J. McComas, Nour E. Raouafi, Arcadi V. Usmanov, Sarah E. Gibson, Craig E. DeForest
{"title":"The Sun’s Alfvén Surface: Recent Insights and Prospects for the Polarimeter to Unify the Corona and Heliosphere (PUNCH)","authors":"Steven R. Cranmer, Rohit Chhiber, Chris R. Gilly, Iver H. Cairns, Robin C. Colaninno, David J. McComas, Nour E. Raouafi, Arcadi V. Usmanov, Sarah E. Gibson, Craig E. DeForest","doi":"10.1007/s11207-023-02218-2","DOIUrl":null,"url":null,"abstract":"<div><p>The solar wind is the extension of the Sun’s hot and ionized corona, and it exists in a state of continuous expansion into interplanetary space. The radial distance at which the wind’s outflow speed exceeds the phase speed of Alfvénic and fast-mode magnetohydrodynamic (MHD) waves is called the Alfvén radius. In one-dimensional models, this is a singular point beyond which most fluctuations in the plasma and magnetic field cannot propagate back down to the Sun. In the multi-dimensional solar wind, this point can occur at different distances along an irregularly shaped “Alfvén surface.” In this article, we review the properties of this surface and discuss its importance in models of solar-wind acceleration, angular-momentum transport, MHD waves and turbulence, and the geometry of magnetically closed coronal loops. We also review the results of simulations and data-analysis techniques that aim to determine the location of the Alfvén surface. Combined with recent perihelia of <i>Parker Solar Probe,</i> these studies seem to indicate that the Alfvén surface spends most of its time at heliocentric distances between about 10 and 20 solar radii. It is becoming apparent that this region of the heliosphere is sufficiently turbulent that there often exist multiple (stochastic and time-dependent) crossings of the Alfvén surface along any radial ray. Thus, in many contexts, it is more appropriate to use the concept of a topologically complex “Alfvén zone” rather than one closed surface. This article also reviews how the <i>Polarimeter to Unify the Corona and Heliosphere</i> (PUNCH) mission will measure the properties of the Alfvén surface and provide key constraints on theories of solar-wind acceleration.</p></div>","PeriodicalId":777,"journal":{"name":"Solar Physics","volume":"298 11","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11207-023-02218-2","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The solar wind is the extension of the Sun’s hot and ionized corona, and it exists in a state of continuous expansion into interplanetary space. The radial distance at which the wind’s outflow speed exceeds the phase speed of Alfvénic and fast-mode magnetohydrodynamic (MHD) waves is called the Alfvén radius. In one-dimensional models, this is a singular point beyond which most fluctuations in the plasma and magnetic field cannot propagate back down to the Sun. In the multi-dimensional solar wind, this point can occur at different distances along an irregularly shaped “Alfvén surface.” In this article, we review the properties of this surface and discuss its importance in models of solar-wind acceleration, angular-momentum transport, MHD waves and turbulence, and the geometry of magnetically closed coronal loops. We also review the results of simulations and data-analysis techniques that aim to determine the location of the Alfvén surface. Combined with recent perihelia of Parker Solar Probe, these studies seem to indicate that the Alfvén surface spends most of its time at heliocentric distances between about 10 and 20 solar radii. It is becoming apparent that this region of the heliosphere is sufficiently turbulent that there often exist multiple (stochastic and time-dependent) crossings of the Alfvén surface along any radial ray. Thus, in many contexts, it is more appropriate to use the concept of a topologically complex “Alfvén zone” rather than one closed surface. This article also reviews how the Polarimeter to Unify the Corona and Heliosphere (PUNCH) mission will measure the properties of the Alfvén surface and provide key constraints on theories of solar-wind acceleration.
期刊介绍:
Solar Physics was founded in 1967 and is the principal journal for the publication of the results of fundamental research on the Sun. The journal treats all aspects of solar physics, ranging from the internal structure of the Sun and its evolution to the outer corona and solar wind in interplanetary space. Papers on solar-terrestrial physics and on stellar research are also published when their results have a direct bearing on our understanding of the Sun.