{"title":"Unified thermomechanical model of Ti-6Al-4V titanium alloy considering microstructure evolution and damage fracture under different stress state","authors":"Rui Feng, Minghe Chen, Lansheng Xie","doi":"10.1007/s12289-023-01799-4","DOIUrl":null,"url":null,"abstract":"<div><p>Establishing a unified constitutive model to simulate the hot deformation behaviors, microstructure evolution and fracture behaviors under different stress states during the hot forming of titanium alloy is indispensable. The high temperature tensile tests were first carried out on different stress states of forged Ti-6Al-4 V alloy specimens to analyze the flow behaviors, microstructure evolution and fracture mechanism. The results show that the effect of temperature on fracture elongation is more significant than strain rate. High temperature and low strain rate will increase the dynamic recrystallization (DRX) volume fraction and softening effect, which inhibits the nucleation and growth of voids, thereby enhancing the plastic deformation ability of the alloy. The DRX volume fraction, grain size and stress triaxiality were introduced into the unified Gurson-Tvergaard-Needleman (GTN) damage model using the internal state variables. The parameters of GTN model were modified by the Response Surface Method (RSM) and compared with the high temperature tension. Finally, the established GTN damage model was successfully applied to finite element (FE) simulation under different stress states. The correlation coefficient <i>R</i> of predicted stress is 0.989, and the maximum errors of DRX volume fraction and grain size are 9.86% and 6.54%. The research results can provide a basis for the performance control in hot working of titanium alloy.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"17 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-023-01799-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Establishing a unified constitutive model to simulate the hot deformation behaviors, microstructure evolution and fracture behaviors under different stress states during the hot forming of titanium alloy is indispensable. The high temperature tensile tests were first carried out on different stress states of forged Ti-6Al-4 V alloy specimens to analyze the flow behaviors, microstructure evolution and fracture mechanism. The results show that the effect of temperature on fracture elongation is more significant than strain rate. High temperature and low strain rate will increase the dynamic recrystallization (DRX) volume fraction and softening effect, which inhibits the nucleation and growth of voids, thereby enhancing the plastic deformation ability of the alloy. The DRX volume fraction, grain size and stress triaxiality were introduced into the unified Gurson-Tvergaard-Needleman (GTN) damage model using the internal state variables. The parameters of GTN model were modified by the Response Surface Method (RSM) and compared with the high temperature tension. Finally, the established GTN damage model was successfully applied to finite element (FE) simulation under different stress states. The correlation coefficient R of predicted stress is 0.989, and the maximum errors of DRX volume fraction and grain size are 9.86% and 6.54%. The research results can provide a basis for the performance control in hot working of titanium alloy.
期刊介绍:
The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material.
The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations.
All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.