S. Shivank, S. Harshul, N. A. Hammad, G. Malaikannan
{"title":"Aerothermodynamic design optimization of planetary vehicle","authors":"S. Shivank, S. Harshul, N. A. Hammad, G. Malaikannan","doi":"10.1134/S0869864323030046","DOIUrl":null,"url":null,"abstract":"<div><p>The present work deals with the design optimization of different vehicle configurations for planetary entry. Choosing the aerothermodynamic characteristics of heat flux and drag as the objective function we have analyzed and simulated the effects of atmospheric resistance on planetary entry vehicles in the rarefied atmosphere. We have utilized the SPARTA (Stochastic PArallel Rarefied-gas Time-accurate Analyzer) DSMC simulator for our simulation. The optimization is carried out with the help of MATLAB optimization module. We have simulated the descent of the existing design of planetary entry vehicles and compared the aero-thermal characteristics of each entry vehicle. The present work demonstrates two of the planetary atmospheric conditions, the first one is Earth, and the later one is Mars. The vehicle geometry is then optimized according to the planetary atmospheric conditions. This work ultimately provides insight into how the effects of geometrical parameters play a pivotal role in the aerothermal loads of planetary entry vehicles.</p></div>","PeriodicalId":800,"journal":{"name":"Thermophysics and Aeromechanics","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermophysics and Aeromechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0869864323030046","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
The present work deals with the design optimization of different vehicle configurations for planetary entry. Choosing the aerothermodynamic characteristics of heat flux and drag as the objective function we have analyzed and simulated the effects of atmospheric resistance on planetary entry vehicles in the rarefied atmosphere. We have utilized the SPARTA (Stochastic PArallel Rarefied-gas Time-accurate Analyzer) DSMC simulator for our simulation. The optimization is carried out with the help of MATLAB optimization module. We have simulated the descent of the existing design of planetary entry vehicles and compared the aero-thermal characteristics of each entry vehicle. The present work demonstrates two of the planetary atmospheric conditions, the first one is Earth, and the later one is Mars. The vehicle geometry is then optimized according to the planetary atmospheric conditions. This work ultimately provides insight into how the effects of geometrical parameters play a pivotal role in the aerothermal loads of planetary entry vehicles.
期刊介绍:
The journal Thermophysics and Aeromechanics publishes original reports, reviews, and discussions on the following topics: hydrogasdynamics, heat and mass transfer, turbulence, means and methods of aero- and thermophysical experiment, physics of low-temperature plasma, and physical and technical problems of energetics. These topics are the prior fields of investigation at the Institute of Thermophysics and the Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences (SB RAS), which are the founders of the journal along with SB RAS. This publication promotes an exchange of information between the researchers of Russia and the international scientific community.