{"title":"Evaluation of SDS-coated iron nanostructure on the gene expression of bio surfactant-producing genes by Pseudomonas aeruginosa","authors":"Yaser Ahsani Arani, Zahra Noormohammadi, Behnam Rasekh, Fatemeh Yazdian, Hojjat kazemi","doi":"10.1002/elsc.202200002","DOIUrl":null,"url":null,"abstract":"<p>Bio surfactants are natural surfactants that induce emulsification, displacement, increased solubility, and mobility of hydrophobic organic compounds. In this study, the gene expression of biosurfactant production genes by <i>Pseudomonas aeruginosa</i> in the presence of sodium dodecyl sulfate coated iron nanostructure (Fe/SDS) were evaluated. Emulsification Index and Surface Tension reduction test to check stability and emulsification the rhamnolipid were done. Purification was evaluated using thin layer chromatography (TLC) and expression of <i>rhlA</i>, <i>mvfR, lasR, rhlR</i> genes was determined using q-PCR technique. Binding of nanoparticles to bio surfactants was confirmed by TEM. The best emulsification index, was by the sample that exposed to 1 mg/L Fe/SDS nanoparticles for 2 days. Rhamnolipid produced in the presence of nanoparticles had an acceptable ability to reduce surface tension. The Rf (retention factor) value obtained was 0.63 by chromatography. q-PCR results showed that the expression <i>of rhlA, mvfR, lasR, rhlR</i> genes was significantly increased in Fe/SDS treated cells, which indicates the significant positive effect (<i>P</i> < 0.05) of nanoparticles on biosurfactant production of treated cells. While, SDS and Fe alone were not affected significantly (<i>P</i> > 0.05) on the expression of these genes. Our findings indicated the importance of nanoparticles in increasing the expression of genes involved in the bio surfactant production pathway of <i>Pseudomonas aeruginosa</i>.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202200002","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering in Life Sciences","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elsc.202200002","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 5
Abstract
Bio surfactants are natural surfactants that induce emulsification, displacement, increased solubility, and mobility of hydrophobic organic compounds. In this study, the gene expression of biosurfactant production genes by Pseudomonas aeruginosa in the presence of sodium dodecyl sulfate coated iron nanostructure (Fe/SDS) were evaluated. Emulsification Index and Surface Tension reduction test to check stability and emulsification the rhamnolipid were done. Purification was evaluated using thin layer chromatography (TLC) and expression of rhlA, mvfR, lasR, rhlR genes was determined using q-PCR technique. Binding of nanoparticles to bio surfactants was confirmed by TEM. The best emulsification index, was by the sample that exposed to 1 mg/L Fe/SDS nanoparticles for 2 days. Rhamnolipid produced in the presence of nanoparticles had an acceptable ability to reduce surface tension. The Rf (retention factor) value obtained was 0.63 by chromatography. q-PCR results showed that the expression of rhlA, mvfR, lasR, rhlR genes was significantly increased in Fe/SDS treated cells, which indicates the significant positive effect (P < 0.05) of nanoparticles on biosurfactant production of treated cells. While, SDS and Fe alone were not affected significantly (P > 0.05) on the expression of these genes. Our findings indicated the importance of nanoparticles in increasing the expression of genes involved in the bio surfactant production pathway of Pseudomonas aeruginosa.
期刊介绍:
Engineering in Life Sciences (ELS) focuses on engineering principles and innovations in life sciences and biotechnology. Life sciences and biotechnology covered in ELS encompass the use of biomolecules (e.g. proteins/enzymes), cells (microbial, plant and mammalian origins) and biomaterials for biosynthesis, biotransformation, cell-based treatment and bio-based solutions in industrial and pharmaceutical biotechnologies as well as in biomedicine. ELS especially aims to promote interdisciplinary collaborations among biologists, biotechnologists and engineers for quantitative understanding and holistic engineering (design-built-test) of biological parts and processes in the different application areas.